Combining Satellite Imagery and machine learning to predict poverty

Published on ● Video Link: https://www.youtube.com/watch?v=bW_-I2qYmEQ



Duration: 5:14
3,375 views
213


5-min ML Paper Challenge
Presenter: https://www.georgelopez-portfolio.com/
https://www.linkedin.com/in/cytlalli/

Combining satellite imagery and machine learning to predict poverty
https://science.sciencemag.org/content/353/6301/790

Reliable data on economic livelihoods remain scarce in the developing world, hampering efforts to study these outcomes and to design policies that improve them. Here we demonstrate an accurate, inexpensive, and scalable method for estimating consumption expenditure and asset wealth from high-resolution satellite imagery. Using survey and satellite data from five African countries—Nigeria, Tanzania, Uganda, Malawi, and Rwanda—we show how a convolutional neural network can be trained to identify image features that can explain up to 75% of the variation in local-level economic outcomes. Our method, which requires only publicly available data, could transform efforts to track and target poverty in developing countries. It also demonstrates how powerful machine learning techniques can be applied in a setting with limited training data, suggesting broad potential application across many scientific domains.




Other Videos By LLMs Explained - Aggregate Intellect - AI.SCIENCE


2019-05-06Deep Temporal Logistic Bag-of-Features For Forecasting High Frequency Limit Order Book Time Series
2019-05-02A Web-scale system for scientific knowledge exploration | AISC
2019-05-02Convolutional Neural Networks for processing EEG signals
2019-05-02Classification of sentiment reviews using n-gram machine learning approach
2019-05-02Introduction to the Conditional GAN - A General Framework for Pixel2Pixel Translation
2019-05-02A Style-Based Generator Architecture for Generative Adversarial Networks
2019-05-02A Framework for Developing Deep Learning Classification Models
2019-05-02Revolutionizing Diet and Health with CNN's and the Microbiome
2019-05-02Efficient implementation of a neural network on hardware using compression techniques
2019-05-02Supercharging AI with high performance distributed computing
2019-05-02Combining Satellite Imagery and machine learning to predict poverty
2019-05-02Revolutionary Deep Learning Method to Denoise EEG Brainwaves
2019-04-25[LISA] Linguistically-Informed Self-Attention for Semantic Role Labeling | AISC
2019-04-23How goodness metrics lead to undesired recommendations
2019-04-22Deep Neural Networks for YouTube Recommendation | AISC Foundational
2019-04-18[Phoenics] A Bayesian Optimizer for Chemistry | AISC Author Speaking
2019-04-18Why do large batch sized trainings perform poorly in SGD? - Generalization Gap Explained | AISC
2019-04-16Structured Neural Summarization | AISC Lunch & Learn
2019-04-11Deep InfoMax: Learning deep representations by mutual information estimation and maximization | AISC
2019-04-08ACT: Adaptive Computation Time for Recurrent Neural Networks | AISC
2019-04-04[FFJORD] Free-form Continuous Dynamics for Scalable Reversible Generative Models (Part 1) | AISC



Tags:
deep learning
machine learning
satellite nightlights images
daylight satellite images
poverty
transfer learning model
poverty estimation
convolutional neural networks
consumption expenditure
asset wealth