A pole stands vertically inside a triangular park ABC. Let the angle of elevation of the top of .... VIDEO
A pole stands vertically inside a triangular park ABC. Let the angle of elevation of the top of the pole from each corner of the park be \(\frac{\pi}{3}\). If the radius of the circumcircle to \(\bigtriangleup \text{ABC }\)is 2, then the height of the pole is equal to: 📲PW App Link - https://bit.ly/YTAI_PWAP 🌐PW Website - https://www.pw.live
Other Videos By PW Solutions 2024-07-17 Let \(\vec{a}=\hat{i}+5 \hat{j}+\alpha \hat{k}, \vec{b}=\hat{i}+3 \hat{j}+\beta \hat{k}\) and \(.... 2024-07-17 Let the vectors\(\begin{aligned}& (2+a+b) \hat{i}+(a+2 b+c) \hat{j}-(b+c) \hat{k} \\& (1.... 2024-07-17 For any vector \(\vec{a}=a_1 \hat{i}+a_2 \hat{j}+a_3 \hat{k}\), with \(10\left|a_i\right|<1, .... 2024-07-17 Let \(\vec{a}=\hat{i}+\hat{j}-\hat{k}\) and \(\vec{c}=2 \hat{i}-3 \hat{j}+2 \hat{k}\). Then the .... 2024-07-17 Let \(\vec{a}=3 \hat{i}+2 \hat{j}+x \hat{k}\) and \(\vec{b}=\hat{i}-\hat{j}+\hat{k}\), for some .... 2024-07-17 Three students \(S_1, S_2\) and \(S _3\) perform an experiment for determining the acceleration .... 2024-07-17 Let \(x_0\) be the point of local maxima of \(f(x)=\vec{a} \cdot(\vec{b} \times \vec{c})\), wher.... 2024-07-17 Let \(\vec{a}=\hat{i}+\hat{j}+2 \hat{k}, \vec{b}=2 \hat{i}-3 \hat{j}+\hat{k}\) and \(\vec{c}=\ha.... 2024-07-17 The plane \(2 x-y+z=4\) intersects the line segment joining the points \(A(a,-2,4)\) and \(B(2, .... 2024-07-17 Let the line \(\frac{x}{1}=\frac{6-y}{2}=\frac{z+8}{5}\) intersect the lines \(\frac{x-5}{4}=\fr.... 2024-07-17 A pole stands vertically inside a triangular park ABC. Let the angle of elevation of the top of .... 2024-07-17 Let \(\theta\) be the angle between the vectors \(\vec{a}\) and \(\vec{b}\), where \(|\vec{a}|=4.... 2024-07-17 If \(\sin ^2\left(10^{\circ}\right) \sin \left(20^{\circ}\right) \sin \left(40^{\circ}\right) \s.... 2024-07-17 The number of elements in the set \(S=\left\{\theta \in[0,2 \pi]: 3 \cos ^4 \theta\right.\) \(\l.... 2024-07-17 Let \(x, y\) and \(z\) be positive real numbers. Suppose \(x, y\) and \(z\) are the lengths of t.... 2024-07-17 If the equation of the plane passing through the point \((1,1,2)\) and perpendicular to the line.... 2024-07-17 If the plane P passes through the intersection of two mutually perpendicular planes \(2 x+k y-5 .... 2024-07-17 Let a unit vector \(\overrightarrow{O P}\) make an angle \(\alpha, \beta, \gamma\) with the posi.... 2024-07-17 If \(\lambda_1<\lambda_2\) are two values of \(\lambda\) such that the angle between the plan.... 2024-07-17 If the lines \(\frac{x-1}{1}=\frac{y-2}{2}=\frac{z+3}{1}\) and \(\frac{x-a}{2}=\frac{y+2}{3}=\fr.... 2024-07-17 Let a line \(l\) pass through the origin and be perpendicular to the lines \(l_1: \vec{r}=(\hat{....