A spherical solid ball of volume \( V \) is made of a material of d...
A spherical solid ball of volume \( V \) is made of a material of density \( \rho_{0} \). It is falling through a
\( \mathrm{P} \) liquid of density \( \rho^{\prime}\left(\rho^{\prime}\rho_{0}\right) \). Assume that the
W liquid applies a viscous force on the ball that is proportional to the square of its speed \( v \). i.e., \( \mathrm{F}_{\text {viscous }}=-\mathrm{kv}^{2}, \mathrm{k}0 \). The terminal speed of the ball is -
(1) \( \sqrt{\frac{\operatorname{Vg}\left(\rho_{0}-\rho^{\prime}\right)}{k}} \)
(2) \( \frac{\operatorname{Vg} \rho_{0}}{\mathrm{k}} \)
(3) \( \sqrt{\frac{\operatorname{Vg} \rho_{0}}{k}} \)
(4) \( \frac{\mathrm{V}\left(\rho_{0}-\rho^{\prime}\right)}{\mathrm{k}} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live