An edge of a variable cube is increasing at the rate of \( \mathrm{...
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=2h2vsZyBMck
An edge of a variable cube is increasing at the rate of
\( \mathrm{P} \)
\( 3 \mathrm{~cm} / \mathrm{sec} \). How fast is the volume of the cube
W
increasing when the edge is \( 10 \mathrm{~cm} \) long?
(1) \( 900 \mathrm{~cm}^{3} / \mathrm{sec} \)
(2) \( 90 \mathrm{~cm}^{3} / \mathrm{sec} \)
(3) \( 300 \mathrm{~cm}^{3} / \mathrm{sec} \)
(4) \( 30 \mathrm{~cm}^{3} / \mathrm{sec} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw