An element \( X \) (atomic mass \( =24 \mathrm{gm} / \mathrm{mol} \) ) forms a face centered cub...
Channel:
Subscribers:
443,000
Published on ● Video Link: https://www.youtube.com/watch?v=cMrzCqzC7F4
An element \( X \) (atomic mass \( =24 \mathrm{gm} / \mathrm{mol} \) ) forms a face centered cubic lattice. If the edge length of the lattice is \( 4 \times \) \( 10^{-8} \mathrm{~cm} \) and the observed density is \( 2.40 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3} \), then the percentage occupancy of lattice points by element \( \mathrm{X} \) is : (Use \( \left.\mathrm{N}_{\mathrm{A}}=6 \times 10^{23}\right) \)
(a) 96
(b) 98
(c) 99.9
(d) None of these
š²PW App Link - https://bit.ly/YTAI_PWAP
šPW Website - https://www.pw.live