Axial Attention & MetNet: A Neural Weather Model for Precipitation Forecasting

Subscribers:
291,000
Published on ● Video Link: https://www.youtube.com/watch?v=lmAj0SU_bW0



Duration: 32:34
2,961 views
111


MetNet is a predictive neural network model for weather prediction. It uses axial attention to capture long-range dependencies. Axial attention decomposes attention layers over images into row-attention and column-attention in order to save memory and computation.

https://ai.googleblog.com/2020/03/a-neural-weather-model-for-eight-hour.html
https://arxiv.org/abs/1912.12180

Abstract:
Weather forecasting is a long standing scientific challenge with direct social and economic impact. The task is suitable for deep neural networks due to vast amounts of continuously collected data and a rich spatial and temporal structure that presents long range dependencies. We introduce MetNet, a neural network that forecasts precipitation up to 8 hours into the future at the high spatial resolution of 1 km2 and at the temporal resolution of 2 minutes with a latency in the order of seconds. MetNet takes as input radar and satellite data and forecast lead time and produces a probabilistic precipitation map. The architecture uses axial self-attention to aggregate the global context from a large input patch corresponding to a million square kilometers. We evaluate the performance of MetNet at various precipitation thresholds and find that MetNet outperforms Numerical Weather Prediction at forecasts of up to 7 to 8 hours on the scale of the continental United States.

Authors: Casper Kaae Sønderby, Lasse Espeholt, Jonathan Heek, Mostafa Dehghani, Avital Oliver,Tim Salimans, Shreya Agrawal, Jason Hickey, Nal Kalchbrenner

Links:
YouTube: https://www.youtube.com/c/yannickilcher
Twitter: https://twitter.com/ykilcher
BitChute: https://www.bitchute.com/channel/yannic-kilcher
Minds: https://www.minds.com/ykilcher







Tags:
deep learning
machine learning
arxiv
google
attention mechanism
attention
transformer
rnn
recurrent
weather
long-range
layers
convolutions
cnns
rain
physics