Consider \( f(x)=e^{x} \sec x-\sqrt{2} \cos x+x, x \in\left[\frac{-...
Channel:
Subscribers:
453,000
Published on ● Video Link: https://www.youtube.com/watch?v=NxYIJNNA_rw
Consider \( f(x)=e^{x} \sec x-\sqrt{2} \cos x+x, x \in\left[\frac{-\pi}{3}, \frac{\pi}{3}\right] \)
\( \mathrm{P} \)
(a) minimum value of \( f(x) \) is \( \left(\sqrt{2} e^{\frac{-\pi}{4}}-1-\frac{\pi}{4}\right) \)
W.
(b) minimum value of \( f(x) \) is \( \left(2 e^{\frac{-\pi}{3}}-\frac{1}{\sqrt{2}}-\frac{\pi}{3}\right) \)
(c) \( f^{\prime}\left(\frac{\pi}{3}\right) \geq f^{\prime}(x) \forall x \in\left[\frac{-\pi}{3}, \frac{\pi}{3}\right] \)
(d) \( f^{\prime}\left(\frac{\pi}{3}\right) \leq f^{\prime}(x) \forall x \in\left[\frac{-\pi}{3}, \frac{\pi}{3}\right] \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw