Consider the function \( f(x)=\frac{(x-1)}{\left(x^{2}-3 x+3\right)} \), then (a) \( f(x) \) dec...
Channel:
Subscribers:
453,000
Published on ● Video Link: https://www.youtube.com/watch?v=m72fax8UCas
Consider the function \( f(x)=\frac{(x-1)}{\left(x^{2}-3 x+3\right)} \), then
(a) \( f(x) \) decreases in \( (0,2) \)
(b) \( f(x) \) decreases in \( (-\infty, 0) \)
- (c) The interval into which the function \( f(x) \) transforms the entire real line is \( [-1,3] \)
(d) \( f^{\prime}(x) \) is discontinuous for all \( x \in \mathrm{R} \)
š²PW App Link - https://bit.ly/YTAI_PWAP
šPW Website - https://www.pw.live