DDPM - Diffusion Models Beat GANs on Image Synthesis (Machine Learning Research Paper Explained)

DDPM - Diffusion Models Beat GANs on Image Synthesis (Machine Learning Research Paper Explained)

Subscribers:
284,000
Published on ● Video Link: https://www.youtube.com/watch?v=W-O7AZNzbzQ



Duration: 54:34
127,453 views
3,039


#ddpm #diffusionmodels #openai

GANs have dominated the image generation space for the majority of the last decade. This paper shows for the first time, how a non-GAN model, a DDPM, can be improved to overtake GANs at standard evaluation metrics for image generation. The produced samples look amazing and other than GANs, the new model has a formal probabilistic foundation. Is there a future for GANs or are Diffusion Models going to overtake them for good?

OUTLINE:
0:00 - Intro & Overview
4:10 - Denoising Diffusion Probabilistic Models
11:30 - Formal derivation of the training loss
23:00 - Training in practice
27:55 - Learning the covariance
31:25 - Improving the noise schedule
33:35 - Reducing the loss gradient noise
40:35 - Classifier guidance
52:50 - Experimental Results

Paper (this): https://arxiv.org/abs/2105.05233
Paper (previous): https://arxiv.org/abs/2102.09672
Code: https://github.com/openai/guided-diffusion

Abstract:
We show that diffusion models can achieve image sample quality superior to the current state-of-the-art generative models. We achieve this on unconditional image synthesis by finding a better architecture through a series of ablations. For conditional image synthesis, we further improve sample quality with classifier guidance: a simple, compute-efficient method for trading off diversity for sample quality using gradients from a classifier. We achieve an FID of 2.97 on ImageNet 128×128, 4.59 on ImageNet 256×256, and 7.72 on ImageNet 512×512, and we match BigGAN-deep even with as few as 25 forward passes per sample, all while maintaining better coverage of the distribution. Finally, we find that classifier guidance combines well with upsampling diffusion models, further improving FID to 3.85 on ImageNet 512×512. We release our code at this https URL

Authors: Alex Nichol, Prafulla Dhariwal

Links:
TabNine Code Completion (Referral): http://bit.ly/tabnine-yannick
YouTube: https://www.youtube.com/c/yannickilcher
Twitter: https://twitter.com/ykilcher
Discord: https://discord.gg/4H8xxDF
BitChute: https://www.bitchute.com/channel/yannic-kilcher
Minds: https://www.minds.com/ykilcher
Parler: https://parler.com/profile/YannicKilcher
LinkedIn: https://www.linkedin.com/in/yannic-kilcher-488534136/
BiliBili: https://space.bilibili.com/1824646584

If you want to support me, the best thing to do is to share out the content :)

If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this):
SubscribeStar: https://www.subscribestar.com/yannickilcher
Patreon: https://www.patreon.com/yannickilcher
Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq
Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2
Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m
Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n




Other Videos By Yannic Kilcher


2021-06-08My GitHub (Trash code I wrote during PhD)
2021-06-05Decision Transformer: Reinforcement Learning via Sequence Modeling (Research Paper Explained)
2021-06-02[ML News] Anthropic raises $124M, ML execs clueless, collusion rings, ELIZA source discovered & more
2021-05-31Reward Is Enough (Machine Learning Research Paper Explained)
2021-05-30[Rant] Can AI read your emotions? (No, but ...)
2021-05-29Fast and Slow Learning of Recurrent Independent Mechanisms (Machine Learning Paper Explained)
2021-05-26[ML News] DeepMind fails to get independence from Google
2021-05-24Expire-Span: Not All Memories are Created Equal: Learning to Forget by Expiring (Paper Explained)
2021-05-21FNet: Mixing Tokens with Fourier Transforms (Machine Learning Research Paper Explained)
2021-05-18AI made this music video | What happens when OpenAI's CLIP meets BigGAN?
2021-05-15DDPM - Diffusion Models Beat GANs on Image Synthesis (Machine Learning Research Paper Explained)
2021-05-11Research Conference ICML drops their acceptance rate | Area Chairs instructed to be more picky
2021-05-08Involution: Inverting the Inherence of Convolution for Visual Recognition (Research Paper Explained)
2021-05-06MLP-Mixer: An all-MLP Architecture for Vision (Machine Learning Research Paper Explained)
2021-05-04I'm out of Academia
2021-05-01DINO: Emerging Properties in Self-Supervised Vision Transformers (Facebook AI Research Explained)
2021-04-30Why AI is Harder Than We Think (Machine Learning Research Paper Explained)
2021-04-27I COOKED A RECIPE MADE BY A.I. | Cooking with GPT-3 (Don't try this at home)
2021-04-19NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis (ML Research Paper Explained)
2021-04-14I BUILT A NEURAL NETWORK IN MINECRAFT | Analog Redstone Network w/ Backprop & Optimizer (NO MODS)
2021-04-11DreamCoder: Growing generalizable, interpretable knowledge with wake-sleep Bayesian program learning



Tags:
deep learning
machine learning
arxiv
explained
neural networks
ai
artificial intelligence
paper
diffusion models
diffusion model
ddpm
ddim
denoising autoencoders
generative models
generative models deep learning
gan alternatives
alternatives to gans
computer vision generative
machine learning image generation
openai diffusion
openai gan
variational autoencoder
log likelihood
variational lower bound