Deep Networks Are Kernel Machines (Paper Explained)

Subscribers:
284,000
Published on ● Video Link: https://www.youtube.com/watch?v=ahRPdiCop3E



Duration: 43:04
56,314 views
1,859


#deeplearning #kernels #neuralnetworks

Full Title: Every Model Learned by Gradient Descent Is Approximately a Kernel Machine

Deep Neural Networks are often said to discover useful representations of the data. However, this paper challenges this prevailing view and suggest that rather than representing the data, deep neural networks store superpositions of the training data in their weights and act as kernel machines at inference time. This is a theoretical paper with a main theorem and an understandable proof and the result leads to many interesting implications for the field.

OUTLINE:
0:00 - Intro & Outline
4:50 - What is a Kernel Machine?
10:25 - Kernel Machines vs Gradient Descent
12:40 - Tangent Kernels
22:45 - Path Kernels
25:00 - Main Theorem
28:50 - Proof of the Main Theorem
39:10 - Implications & My Comments

Paper: https://arxiv.org/abs/2012.00152
Street Talk about Kernels: https://youtu.be/y_RjsDHl5Y4

ERRATA: I simplify a bit too much when I pit kernel methods against gradient descent. Of course, you can even learn kernel machines using GD, they're not mutually exclusive. And it's also not true that you "don't need a model" in kernel machines, as it usually still contains learned parameters.

Abstract:
Deep learning's successes are often attributed to its ability to automatically discover new representations of the data, rather than relying on handcrafted features like other learning methods. We show, however, that deep networks learned by the standard gradient descent algorithm are in fact mathematically approximately equivalent to kernel machines, a learning method that simply memorizes the data and uses it directly for prediction via a similarity function (the kernel). This greatly enhances the interpretability of deep network weights, by elucidating that they are effectively a superposition of the training examples. The network architecture incorporates knowledge of the target function into the kernel. This improved understanding should lead to better learning algorithms.

Authors: Pedro Domingos

Links:
TabNine Code Completion (Referral): http://bit.ly/tabnine-yannick
YouTube: https://www.youtube.com/c/yannickilcher
Twitter: https://twitter.com/ykilcher
Discord: https://discord.gg/4H8xxDF
BitChute: https://www.bitchute.com/channel/yannic-kilcher
Minds: https://www.minds.com/ykilcher
Parler: https://parler.com/profile/YannicKilcher
LinkedIn: https://www.linkedin.com/in/yannic-kilcher-488534136/
BiliBili: https://space.bilibili.com/1824646584

If you want to support me, the best thing to do is to share out the content :)

If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this):
SubscribeStar: https://www.subscribestar.com/yannickilcher
Patreon: https://www.patreon.com/yannickilcher
Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq
Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2
Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m
Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n




Other Videos By Yannic Kilcher


2021-03-11Yann LeCun - Self-Supervised Learning: The Dark Matter of Intelligence (FAIR Blog Post Explained)
2021-03-06Apple or iPod??? Easy Fix for Adversarial Textual Attacks on OpenAI's CLIP Model! #Shorts
2021-03-05Multimodal Neurons in Artificial Neural Networks (w/ OpenAI Microscope, Research Paper Explained)
2021-02-27GLOM: How to represent part-whole hierarchies in a neural network (Geoff Hinton's Paper Explained)
2021-02-26Linear Transformers Are Secretly Fast Weight Memory Systems (Machine Learning Paper Explained)
2021-02-25DeBERTa: Decoding-enhanced BERT with Disentangled Attention (Machine Learning Paper Explained)
2021-02-19Dreamer v2: Mastering Atari with Discrete World Models (Machine Learning Research Paper Explained)
2021-02-17TransGAN: Two Transformers Can Make One Strong GAN (Machine Learning Research Paper Explained)
2021-02-14NFNets: High-Performance Large-Scale Image Recognition Without Normalization (ML Paper Explained)
2021-02-11Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention (AI Paper Explained)
2021-02-04Deep Networks Are Kernel Machines (Paper Explained)
2021-02-02Feedback Transformers: Addressing Some Limitations of Transformers with Feedback Memory (Explained)
2021-01-29SingularityNET - A Decentralized, Open Market and Network for AIs (Whitepaper Explained)
2021-01-22Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity
2021-01-17STOCHASTIC MEME DESCENT - Deep Learning Meme Review - Episode 2 (Part 2 of 2)
2021-01-12OpenAI CLIP: ConnectingText and Images (Paper Explained)
2021-01-06OpenAI DALL·E: Creating Images from Text (Blog Post Explained)
2020-12-26Extracting Training Data from Large Language Models (Paper Explained)
2020-12-24MEMES IS ALL YOU NEED - Deep Learning Meme Review - Episode 2 (Part 1 of 2)
2020-12-16ReBeL - Combining Deep Reinforcement Learning and Search for Imperfect-Information Games (Explained)
2020-12-132M All-In into $5 Pot! WWYD? Daniel Negreanu's No-Limit Hold'em Challenge! (Poker Hand Analysis)



Tags:
deep learning
machine learning
arxiv
explained
neural networks
ai
artificial intelligence
paper
what is deep learning
deep neural networks
neural networks gradient descent
kernel machines
kernel trick
svm
support vector machine
sgd
stochastic gradient descent
machine learning theory
pedro domingos
linear regression
nearest neighbor
representations
data representations
representation learning
proof
math proof
learning theory
representer theorem