Extracting Training Data from Large Language Models (Paper Explained)

Extracting Training Data from Large Language Models (Paper Explained)

Subscribers:
284,000
Published on ● Video Link: https://www.youtube.com/watch?v=plK2WVdLTOY



Duration: 1:03:18
18,188 views
633


#ai #privacy #tech

This paper demonstrates a method to extract verbatim pieces of the training data from a trained language model. Moreover, some of the extracted pieces only appear a handful of times in the dataset. This points to serious security and privacy implications for models like GPT-3. The authors discuss the risks and propose mitigation strategies.

OUTLINE:
0:00 - Intro & Overview
9:15 - Personal Data Example
12:30 - Eidetic Memorization & Language Models
19:50 - Adversary's Objective & Outlier Data
24:45 - Ethical Hedging
26:55 - Two-Step Method Overview
28:20 - Perplexity Baseline
30:30 - Improvement via Perplexity Ratios
37:25 - Weights for Patterns & Weights for Memorization
43:40 - Analysis of Main Results
1:00:30 - Mitigation Strategies
1:01:40 - Conclusion & Comments

Paper: https://arxiv.org/abs/2012.07805

Abstract:
It has become common to publish large (billion parameter) language models that have been trained on private datasets. This paper demonstrates that in such settings, an adversary can perform a training data extraction attack to recover individual training examples by querying the language model.
We demonstrate our attack on GPT-2, a language model trained on scrapes of the public Internet, and are able to extract hundreds of verbatim text sequences from the model's training data. These extracted examples include (public) personally identifiable information (names, phone numbers, and email addresses), IRC conversations, code, and 128-bit UUIDs. Our attack is possible even though each of the above sequences are included in just one document in the training data.
We comprehensively evaluate our extraction attack to understand the factors that contribute to its success. For example, we find that larger models are more vulnerable than smaller models. We conclude by drawing lessons and discussing possible safeguards for training large language models.

Authors: Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, Alina Oprea, Colin Raffel

Links:
YouTube: https://www.youtube.com/c/yannickilcher
Twitter: https://twitter.com/ykilcher
Discord: https://discord.gg/4H8xxDF
BitChute: https://www.bitchute.com/channel/yannic-kilcher
Minds: https://www.minds.com/ykilcher
Parler: https://parler.com/profile/YannicKilcher
LinkedIn: https://www.linkedin.com/in/yannic-kilcher-488534136/

If you want to support me, the best thing to do is to share out the content :)

If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this):
SubscribeStar: https://www.subscribestar.com/yannickilcher
Patreon: https://www.patreon.com/yannickilcher
Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq
Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2
Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m
Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n




Other Videos By Yannic Kilcher


2021-02-17TransGAN: Two Transformers Can Make One Strong GAN (Machine Learning Research Paper Explained)
2021-02-14NFNets: High-Performance Large-Scale Image Recognition Without Normalization (ML Paper Explained)
2021-02-11Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention (AI Paper Explained)
2021-02-04Deep Networks Are Kernel Machines (Paper Explained)
2021-02-02Feedback Transformers: Addressing Some Limitations of Transformers with Feedback Memory (Explained)
2021-01-29SingularityNET - A Decentralized, Open Market and Network for AIs (Whitepaper Explained)
2021-01-22Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity
2021-01-17STOCHASTIC MEME DESCENT - Deep Learning Meme Review - Episode 2 (Part 2 of 2)
2021-01-12OpenAI CLIP: ConnectingText and Images (Paper Explained)
2021-01-06OpenAI DALL·E: Creating Images from Text (Blog Post Explained)
2020-12-26Extracting Training Data from Large Language Models (Paper Explained)
2020-12-24MEMES IS ALL YOU NEED - Deep Learning Meme Review - Episode 2 (Part 1 of 2)
2020-12-16ReBeL - Combining Deep Reinforcement Learning and Search for Imperfect-Information Games (Explained)
2020-12-132M All-In into $5 Pot! WWYD? Daniel Negreanu's No-Limit Hold'em Challenge! (Poker Hand Analysis)
2020-12-01DeepMind's AlphaFold 2 Explained! AI Breakthrough in Protein Folding! What we know (& what we don't)
2020-11-29Predictive Coding Approximates Backprop along Arbitrary Computation Graphs (Paper Explained)
2020-11-22Fourier Neural Operator for Parametric Partial Differential Equations (Paper Explained)
2020-11-15[News] Soccer AI FAILS and mixes up ball and referee's bald head.
2020-11-10Underspecification Presents Challenges for Credibility in Modern Machine Learning (Paper Explained)
2020-11-02Language Models are Open Knowledge Graphs (Paper Explained)
2020-10-26Rethinking Attention with Performers (Paper Explained)



Tags:
deep learning
machine learning
arxiv
explained
neural networks
ai
artificial intelligence
paper
google
apple
openai
berkeley
stanford
carlini
dawn song
google ai
nlp
natural language processing
gpt
gpt2
gpt-2
gpt3
gpt-3
gpt 2
gpt 3
bert
transformers
attention
training data
security
leak
privacy
data protection
ethics
broader impact
likelihood
perplexity
entropy
url
uuid
personal information
address
private
user data
gdpr
adversarial
zlib