Direct Feedback Alignment Scales to Modern Deep Learning Tasks and Architectures (Paper Explained)

Subscribers:
291,000
Published on ● Video Link: https://www.youtube.com/watch?v=Hdo81GtLC_4



Category:
Vlog
Duration: 34:58
16,086 views
444


Backpropagation is one of the central components of modern deep learning. However, it's not biologically plausible, which limits the applicability of deep learning to understand how the human brain works. Direct Feedback Alignment is a biologically plausible alternative and this paper shows that, contrary to previous research, it can be successfully applied to modern deep architectures and solve challenging tasks.

OUTLINE:
0:00 - Intro & Overview
1:40 - The Problem with Backpropagation
10:25 - Direct Feedback Alignment
21:00 - My Intuition why DFA works
31:20 - Experiments

Paper: https://arxiv.org/abs/2006.12878
Code: https://github.com/lightonai/dfa-scales-to-modern-deep-learning
Referenced Paper by Arild Nøkland: https://arxiv.org/abs/1609.01596

Abstract:
Despite being the workhorse of deep learning, the backpropagation algorithm is no panacea. It enforces sequential layer updates, thus preventing efficient parallelization of the training process. Furthermore, its biological plausibility is being challenged. Alternative schemes have been devised; yet, under the constraint of synaptic asymmetry, none have scaled to modern deep learning tasks and architectures. Here, we challenge this perspective, and study the applicability of Direct Feedback Alignment to neural view synthesis, recommender systems, geometric learning, and natural language processing. In contrast with previous studies limited to computer vision tasks, our findings show that it successfully trains a large range of state-of-the-art deep learning architectures, with performance close to fine-tuned backpropagation. At variance with common beliefs, our work supports that challenging tasks can be tackled in the absence of weight transport.

Authors: Julien Launay, Iacopo Poli, François Boniface, Florent Krzakala

Links:
YouTube: https://www.youtube.com/c/yannickilcher
Twitter: https://twitter.com/ykilcher
Discord: https://discord.gg/4H8xxDF
BitChute: https://www.bitchute.com/channel/yannic-kilcher
Minds: https://www.minds.com/ykilcher




Other Videos By Yannic Kilcher


2020-07-07SupSup: Supermasks in Superposition (Paper Explained)
2020-07-06[Live Machine Learning Research] Plain Self-Ensembles (I actually DISCOVER SOMETHING) - Part 1
2020-07-05SpineNet: Learning Scale-Permuted Backbone for Recognition and Localization (Paper Explained)
2020-07-04Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention (Paper Explained)
2020-07-03On the Measure of Intelligence by François Chollet - Part 4: The ARC Challenge (Paper Explained)
2020-07-02BERTology Meets Biology: Interpreting Attention in Protein Language Models (Paper Explained)
2020-07-01GShard: Scaling Giant Models with Conditional Computation and Automatic Sharding (Paper Explained)
2020-06-30Object-Centric Learning with Slot Attention (Paper Explained)
2020-06-29Set Distribution Networks: a Generative Model for Sets of Images (Paper Explained)
2020-06-28Context R-CNN: Long Term Temporal Context for Per-Camera Object Detection (Paper Explained)
2020-06-27Direct Feedback Alignment Scales to Modern Deep Learning Tasks and Architectures (Paper Explained)
2020-06-26On the Measure of Intelligence by François Chollet - Part 3: The Math (Paper Explained)
2020-06-25Discovering Symbolic Models from Deep Learning with Inductive Biases (Paper Explained)
2020-06-24How I Read a Paper: Facebook's DETR (Video Tutorial)
2020-06-23RepNet: Counting Out Time - Class Agnostic Video Repetition Counting in the Wild (Paper Explained)
2020-06-22[Drama] Yann LeCun against Twitter on Dataset Bias
2020-06-21SIREN: Implicit Neural Representations with Periodic Activation Functions (Paper Explained)
2020-06-20Big Self-Supervised Models are Strong Semi-Supervised Learners (Paper Explained)
2020-06-19On the Measure of Intelligence by François Chollet - Part 2: Human Priors (Paper Explained)
2020-06-18Image GPT: Generative Pretraining from Pixels (Paper Explained)
2020-06-17BYOL: Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning (Paper Explained)



Tags:
deep learning
machine learning
arxiv
explained
neural networks
ai
artificial intelligence
paper
gnn
transformer
graph
biology
neurons
axon
dendrites
plausible
biologically plausible
backprop
backpropagation
dfa
feedback alignment
random projections