How I Read a Paper: Facebook's DETR (Video Tutorial)

Subscribers:
284,000
Published on ● Video Link: https://www.youtube.com/watch?v=Uumd2zOOz60



Category:
Tutorial
Duration: 45:24
38,706 views
1,652


I retrace my first reading of Facebook AI's DETR paper and explain my process of understanding it.

OUTLINE:
0:00 - Introduction
1:25 - Title
4:10 - Authors
5:55 - Affiliation
7:40 - Abstract
13:50 - Pictures
20:30 - Introduction
22:00 - Related Work
24:00 - Model
30:00 - Experiments
41:50 - Conclusions & Abstract
42:40 - Final Remarks

Original Video about DETR: https://youtu.be/T35ba_VXkMY

Links:
YouTube: https://www.youtube.com/c/yannickilcher
Twitter: https://twitter.com/ykilcher
Discord: https://discord.gg/4H8xxDF
BitChute: https://www.bitchute.com/channel/yannic-kilcher
Minds: https://www.minds.com/ykilcher




Other Videos By Yannic Kilcher


2020-07-04Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention (Paper Explained)
2020-07-03On the Measure of Intelligence by François Chollet - Part 4: The ARC Challenge (Paper Explained)
2020-07-02BERTology Meets Biology: Interpreting Attention in Protein Language Models (Paper Explained)
2020-07-01GShard: Scaling Giant Models with Conditional Computation and Automatic Sharding (Paper Explained)
2020-06-30Object-Centric Learning with Slot Attention (Paper Explained)
2020-06-29Set Distribution Networks: a Generative Model for Sets of Images (Paper Explained)
2020-06-28Context R-CNN: Long Term Temporal Context for Per-Camera Object Detection (Paper Explained)
2020-06-27Direct Feedback Alignment Scales to Modern Deep Learning Tasks and Architectures (Paper Explained)
2020-06-26On the Measure of Intelligence by François Chollet - Part 3: The Math (Paper Explained)
2020-06-25Discovering Symbolic Models from Deep Learning with Inductive Biases (Paper Explained)
2020-06-24How I Read a Paper: Facebook's DETR (Video Tutorial)
2020-06-23RepNet: Counting Out Time - Class Agnostic Video Repetition Counting in the Wild (Paper Explained)
2020-06-22[Drama] Yann LeCun against Twitter on Dataset Bias
2020-06-21SIREN: Implicit Neural Representations with Periodic Activation Functions (Paper Explained)
2020-06-20Big Self-Supervised Models are Strong Semi-Supervised Learners (Paper Explained)
2020-06-19On the Measure of Intelligence by François Chollet - Part 2: Human Priors (Paper Explained)
2020-06-18Image GPT: Generative Pretraining from Pixels (Paper Explained)
2020-06-17BYOL: Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning (Paper Explained)
2020-06-16TUNIT: Rethinking the Truly Unsupervised Image-to-Image Translation (Paper Explained)
2020-06-15A bio-inspired bistable recurrent cell allows for long-lasting memory (Paper Explained)
2020-06-14SynFlow: Pruning neural networks without any data by iteratively conserving synaptic flow



Tags:
deep learning
machine learning
arxiv
explained
neural networks
ai
artificial intelligence
paper
ml
reading
papers
understanding
quickly
quick
fast
ultralearning
research
facebook
detr
object detection
transformers
how to