Discovering Symbolic Models from Deep Learning with Inductive Biases (Paper Explained)

Subscribers:
284,000
Published on ● Video Link: https://www.youtube.com/watch?v=LMb5tvW-UoQ



Duration: 46:13
40,921 views
1,550


Neural networks are very good at predicting systems' numerical outputs, but not very good at deriving the discrete symbolic equations that govern many physical systems. This paper combines Graph Networks with symbolic regression and shows that the strong inductive biases of these models can be used to derive accurate symbolic equations from observation data.

OUTLINE:
0:00 - Intro & Outline
1:10 - Problem Statement
4:25 - Symbolic Regression
6:40 - Graph Neural Networks
12:05 - Inductive Biases for Physics
15:15 - How Graph Networks compute outputs
23:10 - Loss Backpropagation
24:30 - Graph Network Recap
26:10 - Analogies of GN to Newtonian Mechanics
28:40 - From Graph Network to Equation
33:50 - L1 Regularization of Edge Messages
40:10 - Newtonian Dynamics Example
43:10 - Cosmology Example
44:45 - Conclusions & Appendix

Paper: https://arxiv.org/abs/2006.11287
Code: https://github.com/MilesCranmer/symbolic_deep_learning

Abstract:
We develop a general approach to distill symbolic representations of a learned deep model by introducing strong inductive biases. We focus on Graph Neural Networks (GNNs). The technique works as follows: we first encourage sparse latent representations when we train a GNN in a supervised setting, then we apply symbolic regression to components of the learned model to extract explicit physical relations. We find the correct known equations, including force laws and Hamiltonians, can be extracted from the neural network. We then apply our method to a non-trivial cosmology example-a detailed dark matter simulation-and discover a new analytic formula which can predict the concentration of dark matter from the mass distribution of nearby cosmic structures. The symbolic expressions extracted from the GNN using our technique also generalized to out-of-distribution data better than the GNN itself. Our approach offers alternative directions for interpreting neural networks and discovering novel physical principles from the representations they learn.

Authors: Miles Cranmer, Alvaro Sanchez-Gonzalez, Peter Battaglia, Rui Xu, Kyle Cranmer, David Spergel, Shirley Ho

Links:
YouTube: https://www.youtube.com/c/yannickilcher
Twitter: https://twitter.com/ykilcher
Discord: https://discord.gg/4H8xxDF
BitChute: https://www.bitchute.com/channel/yannic-kilcher
Minds: https://www.minds.com/ykilcher




Other Videos By Yannic Kilcher


2020-07-05SpineNet: Learning Scale-Permuted Backbone for Recognition and Localization (Paper Explained)
2020-07-04Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention (Paper Explained)
2020-07-03On the Measure of Intelligence by François Chollet - Part 4: The ARC Challenge (Paper Explained)
2020-07-02BERTology Meets Biology: Interpreting Attention in Protein Language Models (Paper Explained)
2020-07-01GShard: Scaling Giant Models with Conditional Computation and Automatic Sharding (Paper Explained)
2020-06-30Object-Centric Learning with Slot Attention (Paper Explained)
2020-06-29Set Distribution Networks: a Generative Model for Sets of Images (Paper Explained)
2020-06-28Context R-CNN: Long Term Temporal Context for Per-Camera Object Detection (Paper Explained)
2020-06-27Direct Feedback Alignment Scales to Modern Deep Learning Tasks and Architectures (Paper Explained)
2020-06-26On the Measure of Intelligence by François Chollet - Part 3: The Math (Paper Explained)
2020-06-25Discovering Symbolic Models from Deep Learning with Inductive Biases (Paper Explained)
2020-06-24How I Read a Paper: Facebook's DETR (Video Tutorial)
2020-06-23RepNet: Counting Out Time - Class Agnostic Video Repetition Counting in the Wild (Paper Explained)
2020-06-22[Drama] Yann LeCun against Twitter on Dataset Bias
2020-06-21SIREN: Implicit Neural Representations with Periodic Activation Functions (Paper Explained)
2020-06-20Big Self-Supervised Models are Strong Semi-Supervised Learners (Paper Explained)
2020-06-19On the Measure of Intelligence by François Chollet - Part 2: Human Priors (Paper Explained)
2020-06-18Image GPT: Generative Pretraining from Pixels (Paper Explained)
2020-06-17BYOL: Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning (Paper Explained)
2020-06-16TUNIT: Rethinking the Truly Unsupervised Image-to-Image Translation (Paper Explained)
2020-06-15A bio-inspired bistable recurrent cell allows for long-lasting memory (Paper Explained)



Tags:
deep learning
machine learning
arxiv
explained
neural networks
ai
artificial intelligence
paper
graph networks
graph neural networks
gnn
physics
newtonian
hamiltonian
dynamics
cosmology
dark matter
symbolic regression
edge
vertex
regularization