BYOL: Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning (Paper Explained)

Subscribers:
284,000
Published on ● Video Link: https://www.youtube.com/watch?v=YPfUiOMYOEE



Duration: 33:46
49,886 views
1,447


Self-supervised representation learning relies on negative samples to keep the encoder from collapsing to trivial solutions. However, this paper shows that negative samples, which are a nuisance to implement, are not necessary for learning good representation, and their algorithm BYOL is able to outperform other baselines using just positive samples.

OUTLINE:
0:00 - Intro & Overview
1:10 - Image Representation Learning
3:55 - Self-Supervised Learning
5:35 - Negative Samples
10:50 - BYOL
23:20 - Experiments
30:10 - Conclusion & Broader Impact

Paper: https://arxiv.org/abs/2006.07733

Abstract:
We introduce Bootstrap Your Own Latent (BYOL), a new approach to self-supervised image representation learning. BYOL relies on two neural networks, referred to as online and target networks, that interact and learn from each other. From an augmented view of an image, we train the online network to predict the target network representation of the same image under a different augmented view. At the same time, we update the target network with a slow-moving average of the online network. While state-of-the art methods intrinsically rely on negative pairs, BYOL achieves a new state of the art without them. BYOL reaches 74.3% top-1 classification accuracy on ImageNet using the standard linear evaluation protocol with a ResNet-50 architecture and 79.6% with a larger ResNet. We show that BYOL performs on par or better than the current state of the art on both transfer and semi-supervised benchmarks.

Authors: Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H. Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu, Rémi Munos, Michal Valko

Links:
YouTube: https://www.youtube.com/c/yannickilcher
Twitter: https://twitter.com/ykilcher
Discord: https://discord.gg/4H8xxDF
BitChute: https://www.bitchute.com/channel/yannic-kilcher
Minds: https://www.minds.com/ykilcher




Other Videos By Yannic Kilcher


2020-06-27Direct Feedback Alignment Scales to Modern Deep Learning Tasks and Architectures (Paper Explained)
2020-06-26On the Measure of Intelligence by François Chollet - Part 3: The Math (Paper Explained)
2020-06-25Discovering Symbolic Models from Deep Learning with Inductive Biases (Paper Explained)
2020-06-24How I Read a Paper: Facebook's DETR (Video Tutorial)
2020-06-23RepNet: Counting Out Time - Class Agnostic Video Repetition Counting in the Wild (Paper Explained)
2020-06-22[Drama] Yann LeCun against Twitter on Dataset Bias
2020-06-21SIREN: Implicit Neural Representations with Periodic Activation Functions (Paper Explained)
2020-06-20Big Self-Supervised Models are Strong Semi-Supervised Learners (Paper Explained)
2020-06-19On the Measure of Intelligence by François Chollet - Part 2: Human Priors (Paper Explained)
2020-06-18Image GPT: Generative Pretraining from Pixels (Paper Explained)
2020-06-17BYOL: Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning (Paper Explained)
2020-06-16TUNIT: Rethinking the Truly Unsupervised Image-to-Image Translation (Paper Explained)
2020-06-15A bio-inspired bistable recurrent cell allows for long-lasting memory (Paper Explained)
2020-06-14SynFlow: Pruning neural networks without any data by iteratively conserving synaptic flow
2020-06-13Deep Differential System Stability - Learning advanced computations from examples (Paper Explained)
2020-06-12VirTex: Learning Visual Representations from Textual Annotations (Paper Explained)
2020-06-11Linformer: Self-Attention with Linear Complexity (Paper Explained)
2020-06-10End-to-End Adversarial Text-to-Speech (Paper Explained)
2020-06-09TransCoder: Unsupervised Translation of Programming Languages (Paper Explained)
2020-06-08JOIN ME for the NeurIPS 2020 Flatland Multi-Agent RL Challenge!
2020-06-07BLEURT: Learning Robust Metrics for Text Generation (Paper Explained)



Tags:
deep learning
machine learning
arxiv
explained
neural networks
ai
artificial intelligence
paper
deepmind
ucl
representation
moco
momentum contrast
simclr
encoder
augmentation
mixup
randaugment
crop
random crop
jitter
flip
unsupervised
self-supervised
cnn
resnet
latent
contrastive
online
target
exponential moving average
negatives