For \( \quad z \neq 0 \), define \( \log z=\log |z|+i(\arg z) \) wh...
Channel:
Subscribers:
449,000
Published on ● Video Link: https://www.youtube.com/watch?v=-4gk62mbhro
For \( \quad z \neq 0 \), define
\( \log z=\log |z|+i(\arg z) \)
where \( \quad-\pi\arg (z) \leq \pi \)
i.e. \( \arg (z) \) stands for the principal argument of \( z \).
\( e^{\log z} \) equals
(a) \( z \)
(b) \( |z| \)
(c) \( z+2 k \pi i, k \in \mathbf{I} \)
(d) none of these
\( \mathrm{P} \)
W
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw