For \( \quad z \neq 0 \), define \[ \log z=\log |z|+i(\arg z) \] wh...
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=TvLQH938JT8
For \( \quad z \neq 0 \), define
\[
\log z=\log |z|+i(\arg z)
\]
where \( \quad-\pi\arg (z) \leq \pi \)
i.e. \( \arg (z) \) stands for the principal argument of \( z \).
For \( z, z^{\prime} \neq 0, \log \left(z z^{\prime}\right) \) and \( \log z+\log z^{\prime} \) differ by a multiple of
(a) \( n \pi \)
(b) \( 2 n \pi \)
(c) 0
(d) \( (2 n+1) \pi / 2 \),
where \( n \in \mathbf{I} \).
\( \mathrm{P} \)
\( \mathrm{W} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw