For \( \quad z \neq 0 \), define \[ \begin{aligned} \log z & =\log ...
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=GMTS7wxkXJ4
For \( \quad z \neq 0 \), define
\[
\begin{aligned}
\log z & =\log |z|+i(\arg z) \\
\text { where } & -\pi\arg (z) \leq \pi
\end{aligned}
\]
i.e. \( \arg (z) \) stands for the principal argument of \( z \).
zlog \( \left(e^{x+i y}\right) \) equals
(a) \( e^{x}+\arg (x+i y) \)
(b) \( x+i y \)
(c) \( x+i y+2 k \pi, k \in \mathbf{I} \)
(d) none of these
\( \mathrm{P} \)
W
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw