For \( \quad z \neq 0 \), define \( \begin{aligned} \log z= & \log ...
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=AyIcBA1IFvo
For \( \quad z \neq 0 \), define
\( \begin{aligned} \log z= & \log |z|+i(\arg z) \\ \text { where } & -\pi\arg (z) \leq \pi\end{aligned} \)
i.e. \( \arg (z) \) stands for the principal argument of \( z \).
\( -\log z=1 \) if and only if \( z \) equals
- (a) \( e \)
(b) \( e,-e \)
(c) \( e+2 k \pi i, k \in \mathbf{I} \)
(d) \( \pm e+2 k \pi i, k \in \mathbf{I} \)
\( \mathrm{P} \)
W
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw