If \( a \neq b \) and \( a f(x)+b f\left(\frac{1}{x}\right)=\frac{1}{x}-5 \) for all \( x \neq 0....
Channel:
Subscribers:
449,000
Published on ● Video Link: https://www.youtube.com/watch?v=r9yeNhpj0cc
If \( a \neq b \) and \( a f(x)+b f\left(\frac{1}{x}\right)=\frac{1}{x}-5 \) for all \( x \neq 0 \), then
\( \mathrm{P} \)
\( \int_{1}^{2} f(x) d x=\frac{1}{a^{2}-b^{2}}\left[a(\log 2-\alpha)+\beta\left(\frac{b}{2}\right)\right] \)
Where \( \beta-\alpha \) is equal to
(1) 12
(2) 5
(3) 7
(4) 2
.
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live