\( J_{n}=\int_{0}^{\pi / 2}\left(\frac{\sin n x}{\sin x}\right)^{2} d x \) and \( I_{n}=\int_{0}....
\( J_{n}=\int_{0}^{\pi / 2}\left(\frac{\sin n x}{\sin x}\right)^{2} d x \) and \( I_{n}=\int_{0}^{\pi / 2} \frac{\sin (2 n+1) x}{\sin x} d x \)
\( \mathrm{P} \)
Then
(1) \( J_{n+1}-J_{n}=I_{n} \)
(2) \( J_{n}=I_{n+1}-I_{n} \)
(3) \( J_{n}=\frac{n \pi}{2} \)
(4) \( J_{n}=\frac{\pi}{2} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
2024-01-22 | If \( x=\log _{a}(b c), y=\log _{b}(c a), z=\log _{c}(a b) \), then which
of the following is eq.... |
2024-01-22 | If \( \mathrm{A}=\log _{2} \log _{2} \log _{4} 256+2 \log _{\sqrt{2}} 2 \), then \( A \) is equa.... |
2024-01-22 | The value of \( \sqrt{\left(\log _{0.5}^{2} 4\right)} \) is.... |
2024-01-22 | A positive integer \( n \leq 5 \) such that
\( \int_{0}^{1} e^{2 x-1}(x-1)^{n} d x=\frac{1}{4}\l.... |
2024-01-22 | If \( a^{2}+4 b^{2}=12 a b \), then \( \log (a+2 b) \) is.... |
2024-01-22 | For \( y=\log _{a} x \) to be defined ' \( a \) ' must be.... |
2024-01-22 | The domain of \( f(x)=\ln |\ln x| \) is.... |
2024-01-22 | If the initial pressure of a gas \( 0.03 \mathrm{~atm} \), the mass of
the gas absorbed per gram.... |
2024-01-22 | Which of the following statements are true?
(1) \( \int_{-\pi / 2}^{\pi / 2} \frac{\pi^{\sin x}}.... |
2024-01-22 | \( I_{n}=\int_{0}^{\pi / 2} \frac{\sin (2 n+1) x}{\sin x} d x \), then.... |
2024-01-22 | \( J_{n}=\int_{0}^{\pi / 2}\left(\frac{\sin n x}{\sin x}\right)^{2} d x \) and \( I_{n}=\int_{0}.... |
2024-01-22 | Match the items of Column I to those of Column II.
\begin{tabular}{|l|l|l|l|}
\hline & Column I .... |
2024-01-22 | If \( a \neq b \) and \( a f(x)+b f\left(\frac{1}{x}\right)=\frac{1}{x}-5 \) for all \( x \neq 0.... |
2024-01-22 | \( I_{n}=\int_{-\pi}^{\pi} \frac{\sin n x}{\left(1+\pi^{x}\right) \sin x} d x, \quad n=0,1,2, \l.... |
2024-01-22 | \( f(x)=\int_{0}^{x} \cos ^{4} t d t \), then \( f(x+\pi) \) equals.... |
2024-01-22 | If \( I_{1}=\int_{-4}^{-5} e^{(x+5)^{2}} d x \) and \( I_{2}=3 \int_{1 / 3}^{2 / 3} e^{9[x-(2 / .... |
2024-01-22 | If \( \int_{0}^{x} e^{z x} \cdot e^{-z^{2}} d z=f(x) \int_{0}^{x} e^{-z^{2} / 4} d z \)
then \( .... |
2024-01-22 | \[
\int_{0}^{\sin ^{2} x} \operatorname{Sin}^{-1} \sqrt{t} d t+\int_{0}^{\cos ^{2} x} \operatorn.... |
2024-01-22 | \( \int_{0}^{\log _{e} 5} \frac{e^{x} \sqrt{e^{x}-1}}{e^{x}+3} d x= \)
(1) \( 3+\pi \)
(2) \( 3-.... |
2024-01-22 | Solution of the equation \( \int_{\log _{e} 2}^{x} \frac{d t}{\sqrt{e^{t}-1}}=\frac{\pi}{6} \) i.... |
2024-01-22 | \( \int_{-\pi / 3}^{-\pi / 6} \frac{d x}{1+\tan ^{4} x}= \).... |