If \( a=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{2 n}{n^{2}+k^{2}} \) and \( f(x)=\sqrt...
If \( a=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{2 n}{n^{2}+k^{2}} \) and \( f(x)=\sqrt{\frac{1-\cos x}{1+\cos x}}, x \in(0,1) \), then
(a) \( 2 \sqrt{2} f\left(\frac{a}{2}\right)=f^{\prime}\left(\frac{a}{2}\right) \)
(b) \( f\left(\frac{a}{2}\right) f^{\prime}\left(\frac{a}{2}\right)=\sqrt{2} \)
(c) \( \sqrt{2} f\left(\frac{a}{2}\right)=f^{\prime}\left(\frac{a}{2}\right) \)
(d) \( f\left(\frac{a}{2}\right)=\sqrt{2} f^{\prime}\left(\frac{a}{2}\right) \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
2023-06-09 | Evaluate \( \int_{0}^{1} \log [\sqrt{(1-x)}+\sqrt{(1+x)}] d x \). |
2023-06-09 | Let \( g i:\left[\frac{\pi}{8}, \frac{3 \pi}{8}\right] \rightarrow R, i=1,2 \) and \( f:\left[\f... |
2023-06-09 | Prove that \( \int_{a}^{b} \frac{d x}{\sqrt{x}}=2(\sqrt{b}-\sqrt{a}) \), where \( a, b0 \). usin... |
2023-06-09 | Let \( f \) be a differentiable function satisfying
\( f(x)=\frac{2}{\sqrt{3}} \int_{0}^{\sqrt{3... |
2023-06-09 | Let \( f(x)=\min \{[x-1],[x-2], \ldots,[x-10]\} \) where \( [t] \) denotes the greatest integer ... |
2023-06-09 | Evaluate \( \int_{0}^{1}(t x+1-x)^{n} d x \), where \( n \) is a positive integer and \( t \) is... |
2023-06-09 | If \( f(x)=\int_{0}^{2}\left(\sqrt{2 x}-\sqrt{2 x-x^{2}}\right) d x= \)
\[
\int_{0}^{2}\left(1-\... |
2023-06-09 | If \( n(2 n+1) \int_{0}^{1}\left(1-x^{n}\right)^{2 n} d x=1177 \int_{0}^{1}\left(1-x^{n}\right)^... |
2023-06-09 | If \( I_{1}=\int_{0}^{1}\left(1-\left(1-x^{3}\right)^{\sqrt{2}}\right)^{\sqrt{3}} x^{2} d x \) a... |
2023-06-09 | \( T_{n}=\sum_{r=2 n}^{3 n+1} \frac{r n}{r^{2}+n^{2}}, S_{n}=\sum_{r=2 n+1}^{3 n} \frac{r n}{r^{... |
2023-06-09 | If \( a=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{2 n}{n^{2}+k^{2}} \) and \( f(x)=\sqrt... |
2023-06-09 | Let \( f: R \rightarrow R \) be continuous function satisfying \( f(x)+f(x+k)=n \), for all \( x... |
2023-06-09 | Let \( p(x) \) be fifth degree polynomial such that \( p(x)+1 \) is divisible by \( (x-1)^{3} \)... |
2023-06-09 | \[
\lim _{n \rightarrow \infty} \frac{1}{2^{n}}\left(\frac{1}{\sqrt{1-\frac{1}{2^{n}}}}+\frac{1}... |
2023-06-09 | Let \( \operatorname{In}(x)=\int_{0}^{x} \frac{1}{\left(t^{2}+5\right)^{n}} d t, n=1,2,3, \ldots... |
2023-06-09 | Let \( f:(0,2) \rightarrow R \) be defined as \( f(x)=\log _{2}\left(1+\tan \left(\frac{\pi x}{4... |
2023-06-09 | Find the number of values of \( x \) satisfying \( \int_{0}^{\pi} t^{2} \sin (x-t) d t \) \( =x^... |
2023-06-09 | Let \( f(x)=2+|x|-|x-2|+|x+1|, x \in R \). Consider
\( (\mathrm{S}-1): f^{\prime}\left(-\frac{3}... |
2023-06-09 | Let \( F:[3,5] \rightarrow R \) be a twice differentiable function on (3,
5) such that \( F(x)=e... |
2023-06-09 | The minimum value of the twice differentiable function \( f(x) \) \( =\int_{0}^{x} e^{x-t} f^{\p... |
2023-06-09 | Given that \( U_{n}=\{x(1-x)\}^{n} \) and \( n \geq 2 \) and
\[
\frac{d^{2} U_{n}}{d x^{2}}=n(n-... |