If \( I_{1}=\int_{0}^{1}\left(1-\left(1-x^{3}\right)^{\sqrt{2}}\right)^{\sqrt{3}} x^{2} d x \) a... VIDEO
If \( I_{1}=\int_{0}^{1}\left(1-\left(1-x^{3}\right)^{\sqrt{2}}\right)^{\sqrt{3}} x^{2} d x \) and \( I_{2}=\int_{0}^{1}\left(1-\left(1-x^{3}\right)^{\sqrt{2}}\right)^{\sqrt{3}+1} x^{2} d x \), then \( \frac{\frac{I_{1}}{I_{2}}-\frac{\sqrt{3}-1}{2 \sqrt{2}}+0.2}{10} \) is equal to
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions 2023-06-09 If the area above the \( x \)-axis bounded by the curves \( y=2^{k x} \) and \( x=0 \) and \( x=... 2023-06-09 Let \( \operatorname{Max}_{0 \leq x \leq 2}\left\{\frac{9-x^{2}}{5-x}\right\}=\alpha \) and \( \... 2023-06-09 Evaluate \( \int_{0}^{1} \log [\sqrt{(1-x)}+\sqrt{(1+x)}] d x \). 2023-06-09 Let \( g i:\left[\frac{\pi}{8}, \frac{3 \pi}{8}\right] \rightarrow R, i=1,2 \) and \( f:\left[\f... 2023-06-09 Prove that \( \int_{a}^{b} \frac{d x}{\sqrt{x}}=2(\sqrt{b}-\sqrt{a}) \), where \( a, b0 \). usin... 2023-06-09 Let \( f \) be a differentiable function satisfying
\( f(x)=\frac{2}{\sqrt{3}} \int_{0}^{\sqrt{3... 2023-06-09 Let \( f(x)=\min \{[x-1],[x-2], \ldots,[x-10]\} \) where \( [t] \) denotes the greatest integer ... 2023-06-09 Evaluate \( \int_{0}^{1}(t x+1-x)^{n} d x \), where \( n \) is a positive integer and \( t \) is... 2023-06-09 If \( f(x)=\int_{0}^{2}\left(\sqrt{2 x}-\sqrt{2 x-x^{2}}\right) d x= \)
\[
\int_{0}^{2}\left(1-\... 2023-06-09 If \( n(2 n+1) \int_{0}^{1}\left(1-x^{n}\right)^{2 n} d x=1177 \int_{0}^{1}\left(1-x^{n}\right)^... 2023-06-09 If \( I_{1}=\int_{0}^{1}\left(1-\left(1-x^{3}\right)^{\sqrt{2}}\right)^{\sqrt{3}} x^{2} d x \) a... 2023-06-09 \( T_{n}=\sum_{r=2 n}^{3 n+1} \frac{r n}{r^{2}+n^{2}}, S_{n}=\sum_{r=2 n+1}^{3 n} \frac{r n}{r^{... 2023-06-09 If \( a=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{2 n}{n^{2}+k^{2}} \) and \( f(x)=\sqrt... 2023-06-09 If \( e^{-x} f(x)=2+\int_{0}^{x} \sqrt{t^{4}+1} \cdot d t \) where \( g(f(x))=x \) then find \( ... 2023-06-09 Let \( f: R \rightarrow R \) be continuous function satisfying \( f(x)+f(x+k)=n \), for all \( x... 2023-06-09 Let \( p(x) \) be fifth degree polynomial such that \( p(x)+1 \) is divisible by \( (x-1)^{3} \)... 2023-06-09 \[
\lim _{n \rightarrow \infty} \frac{1}{2^{n}}\left(\frac{1}{\sqrt{1-\frac{1}{2^{n}}}}+\frac{1}... 2023-06-09 Let \( \operatorname{In}(x)=\int_{0}^{x} \frac{1}{\left(t^{2}+5\right)^{n}} d t, n=1,2,3, \ldots... 2023-06-09 Let \( f:(0,2) \rightarrow R \) be defined as \( f(x)=\log _{2}\left(1+\tan \left(\frac{\pi x}{4... 2023-06-09 Find the number of values of \( x \) satisfying \( \int_{0}^{\pi} t^{2} \sin (x-t) d t \) \( =x^... 2023-06-09 Let \( f(x)=2+|x|-|x-2|+|x+1|, x \in R \). Consider
\( (\mathrm{S}-1): f^{\prime}\left(-\frac{3}...