Let \( p(x) \) be fifth degree polynomial such that \( p(x)+1 \) is divisible by \( (x-1)^{3} \)...

Channel:
Subscribers:
445,000
Published on ● Video Link: https://www.youtube.com/watch?v=0TRa7aeD_XQ



Duration: 7:08
2 views
0


Let \( p(x) \) be fifth degree polynomial such that \( p(x)+1 \) is divisible by \( (x-1)^{3} \) and \( p(x)-1 \) is divisible by \( (x+1)^{3} \). Then find the value of definite integral \( \int_{-10}^{10} p(x) d x \).
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live




Other Videos By PW Solutions


2023-06-09Let \( f \) be a differentiable function satisfying \( f(x)=\frac{2}{\sqrt{3}} \int_{0}^{\sqrt{3...
2023-06-09Let \( f(x)=\min \{[x-1],[x-2], \ldots,[x-10]\} \) where \( [t] \) denotes the greatest integer ...
2023-06-09Evaluate \( \int_{0}^{1}(t x+1-x)^{n} d x \), where \( n \) is a positive integer and \( t \) is...
2023-06-09If \( f(x)=\int_{0}^{2}\left(\sqrt{2 x}-\sqrt{2 x-x^{2}}\right) d x= \) \[ \int_{0}^{2}\left(1-\...
2023-06-09If \( n(2 n+1) \int_{0}^{1}\left(1-x^{n}\right)^{2 n} d x=1177 \int_{0}^{1}\left(1-x^{n}\right)^...
2023-06-09If \( I_{1}=\int_{0}^{1}\left(1-\left(1-x^{3}\right)^{\sqrt{2}}\right)^{\sqrt{3}} x^{2} d x \) a...
2023-06-09\( T_{n}=\sum_{r=2 n}^{3 n+1} \frac{r n}{r^{2}+n^{2}}, S_{n}=\sum_{r=2 n+1}^{3 n} \frac{r n}{r^{...
2023-06-09If \( a=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{2 n}{n^{2}+k^{2}} \) and \( f(x)=\sqrt...
2023-06-09If \( e^{-x} f(x)=2+\int_{0}^{x} \sqrt{t^{4}+1} \cdot d t \) where \( g(f(x))=x \) then find \( ...
2023-06-09Let \( f: R \rightarrow R \) be continuous function satisfying \( f(x)+f(x+k)=n \), for all \( x...
2023-06-09Let \( p(x) \) be fifth degree polynomial such that \( p(x)+1 \) is divisible by \( (x-1)^{3} \)...
2023-06-09\[ \lim _{n \rightarrow \infty} \frac{1}{2^{n}}\left(\frac{1}{\sqrt{1-\frac{1}{2^{n}}}}+\frac{1}...
2023-06-09Let \( \operatorname{In}(x)=\int_{0}^{x} \frac{1}{\left(t^{2}+5\right)^{n}} d t, n=1,2,3, \ldots...
2023-06-09Let \( f:(0,2) \rightarrow R \) be defined as \( f(x)=\log _{2}\left(1+\tan \left(\frac{\pi x}{4...
2023-06-09Find the number of values of \( x \) satisfying \( \int_{0}^{\pi} t^{2} \sin (x-t) d t \) \( =x^...
2023-06-09Let \( f(x)=2+|x|-|x-2|+|x+1|, x \in R \). Consider \( (\mathrm{S}-1): f^{\prime}\left(-\frac{3}...
2023-06-09Let \( F:[3,5] \rightarrow R \) be a twice differentiable function on (3, 5) such that \( F(x)=e...
2023-06-09The minimum value of the twice differentiable function \( f(x) \) \( =\int_{0}^{x} e^{x-t} f^{\p...
2023-06-09Given that \( U_{n}=\{x(1-x)\}^{n} \) and \( n \geq 2 \) and \[ \frac{d^{2} U_{n}}{d x^{2}}=n(n-...
2023-06-09\( \int_{1 / 3}^{1 / 2}\left\{x\left[\frac{2}{x}\right]\right\} d x \) (where [·] is G.I.F.) and...
2023-06-09If \( f(x)=x+\int_{0}^{1}\left(x y^{2}+x^{2} y\right)(f(y)) d y \), find \( f(x) \)