Let \( f(x)=2+|x|-|x-2|+|x+1|, x \in R \). Consider \( (\mathrm{S}-1): f^{\prime}\left(-\frac{3}...

Channel:
Subscribers:
445,000
Published on ● Video Link: https://www.youtube.com/watch?v=8IVU1craOM4



Duration: 5:06
0 views
0


Let \( f(x)=2+|x|-|x-2|+|x+1|, x \in R \). Consider
\( (\mathrm{S}-1): f^{\prime}\left(-\frac{3}{2}\right)+f^{\prime}\left(-\frac{1}{2}\right)+f^{\prime}\left(\frac{1}{2}\right)+f^{\prime}\left(\frac{3}{2}\right)=2 \)
(S-2) : \( \int_{-2}^{2} f(x) d x=12 \). Then,
(a) Both (S-1) and (S-2) are correct
(b) Both (S-1) and (S-2) are wrong
(c) Only (S-1) is correct
(d) Only (S-2) is correct
šŸ“²PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live




Other Videos By PW Solutions


2023-06-09If \( I_{1}=\int_{0}^{1}\left(1-\left(1-x^{3}\right)^{\sqrt{2}}\right)^{\sqrt{3}} x^{2} d x \) a...
2023-06-09\( T_{n}=\sum_{r=2 n}^{3 n+1} \frac{r n}{r^{2}+n^{2}}, S_{n}=\sum_{r=2 n+1}^{3 n} \frac{r n}{r^{...
2023-06-09If \( a=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{2 n}{n^{2}+k^{2}} \) and \( f(x)=\sqrt...
2023-06-09If \( e^{-x} f(x)=2+\int_{0}^{x} \sqrt{t^{4}+1} \cdot d t \) where \( g(f(x))=x \) then find \( ...
2023-06-09Let \( f: R \rightarrow R \) be continuous function satisfying \( f(x)+f(x+k)=n \), for all \( x...
2023-06-09Let \( p(x) \) be fifth degree polynomial such that \( p(x)+1 \) is divisible by \( (x-1)^{3} \)...
2023-06-09\[ \lim _{n \rightarrow \infty} \frac{1}{2^{n}}\left(\frac{1}{\sqrt{1-\frac{1}{2^{n}}}}+\frac{1}...
2023-06-09Let \( \operatorname{In}(x)=\int_{0}^{x} \frac{1}{\left(t^{2}+5\right)^{n}} d t, n=1,2,3, \ldots...
2023-06-09Let \( f:(0,2) \rightarrow R \) be defined as \( f(x)=\log _{2}\left(1+\tan \left(\frac{\pi x}{4...
2023-06-09Find the number of values of \( x \) satisfying \( \int_{0}^{\pi} t^{2} \sin (x-t) d t \) \( =x^...
2023-06-09Let \( f(x)=2+|x|-|x-2|+|x+1|, x \in R \). Consider \( (\mathrm{S}-1): f^{\prime}\left(-\frac{3}...
2023-06-09Let \( F:[3,5] \rightarrow R \) be a twice differentiable function on (3, 5) such that \( F(x)=e...
2023-06-09The minimum value of the twice differentiable function \( f(x) \) \( =\int_{0}^{x} e^{x-t} f^{\p...
2023-06-09Given that \( U_{n}=\{x(1-x)\}^{n} \) and \( n \geq 2 \) and \[ \frac{d^{2} U_{n}}{d x^{2}}=n(n-...
2023-06-09\( \int_{1 / 3}^{1 / 2}\left\{x\left[\frac{2}{x}\right]\right\} d x \) (where [Ā·] is G.I.F.) and...
2023-06-09If \( f(x)=x+\int_{0}^{1}\left(x y^{2}+x^{2} y\right)(f(y)) d y \), find \( f(x) \)
2023-06-09Let \( f(x)=x^{3}-\frac{3 x^{2}}{2}+x+\frac{1}{4} \). Find the value of \( \left(\int_{1 / 5}^{4...
2023-06-09If \( \lim _{n \rightarrow \infty} \frac{\left[1^{3}+2^{3}+3^{3} \ldots . .+(2 n)^{3}\right] \cd...
2023-06-09Let \( f \) be a real-valued function defined on the interval \( (0, \infty) \) by \( f(x)=\ln x...
2023-06-09\( I=\int_{\pi / 4}^{2 n \pi+\frac{\pi}{4}} \frac{d x}{\left(1+\pi^{\cos x}\right)\left(1+\pi^{\...
2023-06-09Let \( f(x)=\left\{\begin{array}{ll}x+1, & 0 \leq x \leq 1 \\ 2 x^{2}-6 x+6, & 1x \leq 2\end{arr...