If \( \alpha, \beta \) are two distinct real roots of the equation \( a x^{3}+x-1-a \) \( =0 \),...

Channel:
Subscribers:
449,000
Published on ● Video Link: https://www.youtube.com/watch?v=EduMK0sLtaI



Category:
Let's Play
Duration: 10:40
3 views
0


If \( \alpha, \beta \) are two distinct real roots of the equation \( a x^{3}+x-1-a \) \( =0 \), (where \( a \neq-1,0 \) and \( \alpha, \beta \neq 1) \) then \( \lim _{x \rightarrow \frac{1}{\alpha}} \frac{(1+a) x^{3}-x^{2}-a}{\left(e^{1-\alpha x}-1\right)(x-1)} \) is equal to is equal to
(a) \( \alpha^{2}-\beta^{2} \)
(b) \( a(\alpha-\beta) \)
(c) \( (\alpha-\beta) \)
(d) \( \frac{a(\alpha-\beta)}{\alpha} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live




Other Videos By PW Solutions


2023-06-08If \( f(x)=\left\{\begin{array}{ll}\ln \operatorname{cosec}(x \pi) & 0x1 \\ \ln \sin (2 x \pi) &...
2023-06-08If \( \alpha \) is the root of the equation \( x-\tan x=3 \) where \( \alpha \in\left(\frac{\pi}...
2023-06-08Comprehension \( \quad: \) If the sequence is defined by \( a_{1}= \) 0 and \( a_{n+1}=a_{n}+4 n...
2023-06-08Let \( f(x)=\max \{p, q, r\} \), where \( p=\lim _{n \rightarrow \infty} \lim _{\alpha \rightarr...
2023-06-08Let \( f(x)=\max \{p, q, r\} \), where \( p=\lim _{n \rightarrow \infty} \lim _{\alpha \rightarr...
2023-06-08Comprehension \( \quad: \) If the sequence is defined by \( a_{1}= \) 0 and \( a_{n+1}=a_{n}+4 n...
2023-06-08Let \( f(x)=\max \{p, q, r\} \), where \[ p=\lim _{n \rightarrow \infty} \lim _{\alpha \rightarr...
2023-06-08Let \( f \) be a polynomial function satisfying \( f\left(x^{2}\right)-x f(x) \) \( =x^{4}\left(...
2023-06-08\[ \lim _{x \rightarrow 0}\left(\frac{(1+x)^{\frac{2}{x}}}{e^{2}}\right)^{\frac{4}{\sin x}} \] (...
2023-06-08\[ \lim _{x \rightarrow a} \frac{1}{\left(a^{2}-x^{2}\right)^{2}}\left[\frac{a^{2}+x^{2}}{a x}+\...
2023-06-08If \( \alpha, \beta \) are two distinct real roots of the equation \( a x^{3}+x-1-a \) \( =0 \),...
2023-06-08\[ \lim _{x \rightarrow \infty}\left(\frac{(x+1)^{x}}{x^{x} \cdot e}\right)^{x}= \] (a) \( e^{1 ...
2023-06-08\( \lim _{x \rightarrow 0} \frac{1-\frac{4}{\frac{1}{f(x)}+\frac{1}{f(2 x)}+\frac{1}{f(3 x)}+\fr...
2023-06-08If \( f(x)=\frac{\sin \{x\}-\{x\}}{\left(x^{2}+b x+c\right)^{3}}(\{\cdot\} \) is fractional part...
2023-06-08If \( P=\lim _{x \rightarrow \tan 3}\left[\tan ^{-1} x\right]+2\left[1-\tan ^{-1} x\right]^{2}+\...
2023-06-08If \( f(x)=8 x^{3}+3 x \), then \( \lim _{x \rightarrow \infty} \frac{f^{-1}(8 x)-f^{-1}(x)}{x^{...
2023-06-08Let \( f(x)=\frac{\ln \left(x^{2}+e^{x}\right)}{\ln \left(x^{4}+e^{2 x}\right)} \). If \( \lim _...
2023-06-08Match the column (a) \( \mathrm{A}-(\mathrm{q}) \); B-(q); C-(r); D-(q) (b) A-(r); B-(q); C-(p);...
2023-06-08If \( \{x\} \) represents the fractional part of \( x \). The value of \( \lim _{x \rightarrow 0...
2023-06-08\( \lim _{n \rightarrow \infty}\left\{\left(\frac{n}{n+1}\right)^{a}+\sin \frac{1}{n}\right\}^{n...
2023-06-08fractional part of \( x \) )