If \( f(x)=\left\{\begin{array}{ll}\ln \operatorname{cosec}(x \pi) & 0x1 \\ \ln \sin (2 x \pi) &...

Channel:
Subscribers:
449,000
Published on ● Video Link: https://www.youtube.com/watch?v=dKt66AP9H40



Duration: 8:16
0 views
0


If \( f(x)=\left\{\begin{array}{ll}\ln \operatorname{cosec}(x \pi) & 0x1 \\ \ln \sin (2 x \pi) & 1x3 / 2\end{array}\right. \) and \( g(x)=\frac{2^{f(x)}+1}{3^{f(x)}+1} \) then find \( \tan ^{-1}\left(g\left(1^{-}\right)\right)+\sec ^{-1}\left(g\left(1^{+}\right)\right) \).
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live




Other Videos By PW Solutions


2023-06-08\( \lim _{x \rightarrow \frac{\pi}{2}}\left(\tan ^{2} x\left(\begin{array}{c}\left(2 \sin ^{2} x...
2023-06-08\( \lim _{x \rightarrow 0} \frac{\cos (\sin x)-\cos x}{x^{4}} \) is equal to (a) \( \frac{1}{3} ...
2023-06-08The value of \( \lim _{x \rightarrow 1} \frac{\left(x^{2}-1\right) \sin ^{2}(\pi x)}{x^{4}-2 x^{...
2023-06-08The value of \( \lim _{n \rightarrow \infty} \frac{[r]+[2 r]+\ldots+[n r]}{n^{2}} \), where \( r...
2023-06-08If \( \lim _{x \rightarrow 0} \frac{a e^{x}-b \cos x+c e^{-x}}{x \sin x}=2 \), then \( a+b+c \) ...
2023-06-08If \( \lim _{x \rightarrow 0} \frac{\sin ^{-1} x-\tan ^{-1} x}{3 x^{3}} \) is equal to \( l \), ...
2023-06-08The value of \( \lim _{x \rightarrow 0^{+}} \frac{\cos ^{-1}\left(x-[x]^{2}\right) \cdot \sin ^{...
2023-06-08If \( k=\lim _{x \rightarrow 1} \sec ^{-1}\left(\frac{\lambda^{2}}{\ln x}-\frac{\lambda^{2}}{x-1...
2023-06-08Below is the graph of the function \( f \) : Compute the following limits (i) \( \lim _{x \right...
2023-06-08Let \( x_{1}, x_{2}, x_{3} \) are roots of equation \( (x-1)(x-8)(x-31)=1 \). Then find the valu...
2023-06-08If \( f(x)=\left\{\begin{array}{ll}\ln \operatorname{cosec}(x \pi) & 0x1 \\ \ln \sin (2 x \pi) &...
2023-06-08If \( \alpha \) is the root of the equation \( x-\tan x=3 \) where \( \alpha \in\left(\frac{\pi}...
2023-06-08Comprehension \( \quad: \) If the sequence is defined by \( a_{1}= \) 0 and \( a_{n+1}=a_{n}+4 n...
2023-06-08Let \( f(x)=\max \{p, q, r\} \), where \( p=\lim _{n \rightarrow \infty} \lim _{\alpha \rightarr...
2023-06-08Let \( f(x)=\max \{p, q, r\} \), where \( p=\lim _{n \rightarrow \infty} \lim _{\alpha \rightarr...
2023-06-08Comprehension \( \quad: \) If the sequence is defined by \( a_{1}= \) 0 and \( a_{n+1}=a_{n}+4 n...
2023-06-08Let \( f(x)=\max \{p, q, r\} \), where \[ p=\lim _{n \rightarrow \infty} \lim _{\alpha \rightarr...
2023-06-08Let \( f \) be a polynomial function satisfying \( f\left(x^{2}\right)-x f(x) \) \( =x^{4}\left(...
2023-06-08\[ \lim _{x \rightarrow 0}\left(\frac{(1+x)^{\frac{2}{x}}}{e^{2}}\right)^{\frac{4}{\sin x}} \] (...
2023-06-08\[ \lim _{x \rightarrow a} \frac{1}{\left(a^{2}-x^{2}\right)^{2}}\left[\frac{a^{2}+x^{2}}{a x}+\...
2023-06-08If \( \alpha, \beta \) are two distinct real roots of the equation \( a x^{3}+x-1-a \) \( =0 \),...