\[
\lim _{x \rightarrow a} \frac{1}{\left(a^{2}-x^{2}\right)^{2}}\left[\frac{a^{2}+x^{2}}{a x}+\...
\[
\lim _{x \rightarrow a} \frac{1}{\left(a^{2}-x^{2}\right)^{2}}\left[\frac{a^{2}+x^{2}}{a x}+\cos \frac{\pi}{2}(a+x)-\cos \left(\frac{\pi}{2}(a-x)\right)\right]
\]
where \( a=2 m+1, m \in I \)
(a) \( \frac{\pi a^{2}+1}{16 a} \)
(b) \( \frac{\pi^{2} a+2}{8 a} \)
(c) \( \frac{\pi^{2} a^{2}+4}{16 a^{4}} \)
(d) \( \frac{\pi^{2} a^{2}+4}{32 a^{4}} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
2023-06-08 | Let \( x_{1}, x_{2}, x_{3} \) are roots of equation \( (x-1)(x-8)(x-31)=1 \). Then find the valu... |
2023-06-08 | If \( f(x)=\left\{\begin{array}{ll}\ln \operatorname{cosec}(x \pi) & 0x1 \\ \ln \sin (2 x \pi) &... |
2023-06-08 | If \( \alpha \) is the root of the equation \( x-\tan x=3 \) where \( \alpha \in\left(\frac{\pi}... |
2023-06-08 | Comprehension \( \quad: \) If the sequence is defined by \( a_{1}= \) 0 and \( a_{n+1}=a_{n}+4 n... |
2023-06-08 | Let \( f(x)=\max \{p, q, r\} \), where
\( p=\lim _{n \rightarrow \infty} \lim _{\alpha \rightarr... |
2023-06-08 | Let \( f(x)=\max \{p, q, r\} \), where
\( p=\lim _{n \rightarrow \infty} \lim _{\alpha \rightarr... |
2023-06-08 | Comprehension \( \quad: \) If the sequence is defined by \( a_{1}= \) 0 and \( a_{n+1}=a_{n}+4 n... |
2023-06-08 | Let \( f(x)=\max \{p, q, r\} \), where
\[
p=\lim _{n \rightarrow \infty} \lim _{\alpha \rightarr... |
2023-06-08 | Let \( f \) be a polynomial function satisfying \( f\left(x^{2}\right)-x f(x) \) \( =x^{4}\left(... |
2023-06-08 | \[
\lim _{x \rightarrow 0}\left(\frac{(1+x)^{\frac{2}{x}}}{e^{2}}\right)^{\frac{4}{\sin x}}
\]
(... |
2023-06-08 | \[
\lim _{x \rightarrow a} \frac{1}{\left(a^{2}-x^{2}\right)^{2}}\left[\frac{a^{2}+x^{2}}{a x}+\... |
2023-06-08 | If \( \alpha, \beta \) are two distinct real roots of the equation \( a x^{3}+x-1-a \) \( =0 \),... |
2023-06-08 | \[
\lim _{x \rightarrow \infty}\left(\frac{(x+1)^{x}}{x^{x} \cdot e}\right)^{x}=
\]
(a) \( e^{1 ... |
2023-06-08 | \( \lim _{x \rightarrow 0} \frac{1-\frac{4}{\frac{1}{f(x)}+\frac{1}{f(2 x)}+\frac{1}{f(3 x)}+\fr... |
2023-06-08 | If \( f(x)=\frac{\sin \{x\}-\{x\}}{\left(x^{2}+b x+c\right)^{3}}(\{\cdot\} \) is fractional part... |
2023-06-08 | If \( P=\lim _{x \rightarrow \tan 3}\left[\tan ^{-1} x\right]+2\left[1-\tan ^{-1} x\right]^{2}+\... |
2023-06-08 | If \( f(x)=8 x^{3}+3 x \), then \( \lim _{x \rightarrow \infty} \frac{f^{-1}(8 x)-f^{-1}(x)}{x^{... |
2023-06-08 | Let \( f(x)=\frac{\ln \left(x^{2}+e^{x}\right)}{\ln \left(x^{4}+e^{2 x}\right)} \). If \( \lim _... |
2023-06-08 | Match the column
(a) \( \mathrm{A}-(\mathrm{q}) \); B-(q); C-(r); D-(q)
(b) A-(r); B-(q); C-(p);... |
2023-06-08 | If \( \{x\} \) represents the fractional part of \( x \). The value of \( \lim _{x \rightarrow 0... |
2023-06-08 | \( \lim _{n \rightarrow \infty}\left\{\left(\frac{n}{n+1}\right)^{a}+\sin \frac{1}{n}\right\}^{n... |