If \( f(x)=\left\{\begin{array}{cl}\frac{\log (1+a x)-\log (1-b x)}...
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=7Ra9PV1remE
If \( f(x)=\left\{\begin{array}{cl}\frac{\log (1+a x)-\log (1-b x)}{x}, & , x \neq 0 \\ k & , x=0\end{array}\right. \) and \( f(x) \) is continuous at \( x=0 \), then the value of \( k \) is
(a) \( a-b \)
(b) \( a+b \)
(c) \( \log a+\log b \)
(d) none of these
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw