Three particles \( \mathrm{P}, \mathrm{Q} \) and \( \mathrm{R} \) are placed as per given figure...
Three particles \( \mathrm{P}, \mathrm{Q} \) and \( \mathrm{R} \) are placed as per given figure.
Masses of \( \mathrm{P}, \mathrm{Q} \) and \( \mathrm{R} \) are \( \sqrt{3} \mathrm{~m}, \sqrt{3} \mathrm{~m} \) and \( \mathrm{m} \) respectively.
\( \mathrm{P} \)
The gravitational force on a fourth particle \( S \) of mass \( m \) is
W equal to
(a) \( \frac{\sqrt{3} \mathrm{GM}^{2}}{2 \mathrm{~d}^{2}} \) in ST direction only
(b) \( \frac{\sqrt{3} \mathrm{Gm}^{2}}{2 \mathrm{~d}^{2}} \) in \( \mathrm{SQ} \) direction and \( \frac{\sqrt{3} \mathrm{Gm}^{2}}{2 \mathrm{~d}^{2}} \) in \( \mathrm{SU} \) direction
(c) \( \frac{\sqrt{3} \mathrm{Gm}^{2}}{2 \mathrm{~d}^{2}} \) in \( \mathrm{SQ} \) direction only
(d) \( \frac{\sqrt{3} \mathrm{Gm}^{2}}{2 \mathrm{~d}^{2}} \) in SQ direction and \( \frac{\sqrt{3} \mathrm{Gm}^{2}}{2 \mathrm{~d}^{2}} \) in ST direction
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live