If vectors \( \overrightarrow{\mathrm{A}}=\cos \omega \mathrm{t} \hat{i}+\sin \omega \mathrm{t} ...
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=DK-uAFBOCTs
If vectors \( \overrightarrow{\mathrm{A}}=\cos \omega \mathrm{t} \hat{i}+\sin \omega \mathrm{t} \hat{j} \) and \( \overrightarrow{\mathrm{B}}=\cos \frac{\omega \mathrm{t}}{2} \hat{i}+\sin \frac{\omega \mathrm{t}}{2} \hat{j} \) are functions of time, then the value of \( t \) at which they are orthogonal to each other is:
(1) \( t=0 \)
(2) \( \mathrm{t}=\frac{\pi}{4 \omega} \)
(3) \( t=\frac{\pi}{2 \omega} \)
(4) \( \mathrm{t}=\frac{\pi}{\omega} \)
š²PW App Link - https://bit.ly/YTAI_PWAP
šPW Website - https://www.pw.live