In any \( \triangle \mathrm{ABC} \), prove that \[ \frac{\tan \frac{A}{2}}{(a-b)(a-c)}+\frac{\ta...
Channel:
Subscribers:
445,000
Published on ● Video Link: https://www.youtube.com/watch?v=-9D9S8cyJpM
In any \( \triangle \mathrm{ABC} \), prove that
\[
\frac{\tan \frac{A}{2}}{(a-b)(a-c)}+\frac{\tan \frac{B}{2}}{(b-a)(b-c)}+\frac{\tan \frac{C}{2}}{(c-a)(c-b)}=\frac{1}{\Delta}
\]
\( \mathrm{P} \)
W
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live