\( \int \frac{e^{x \sqrt{2}}\left(1-x^{2}\right)}{(1-x \sqrt{2}) \sqrt{1-2 x^{2}}} d x \) is equ....
Channel:
Subscribers:
443,000
Published on ● Video Link: https://www.youtube.com/watch?v=onQUQmDpCSQ
\( \int \frac{e^{x \sqrt{2}}\left(1-x^{2}\right)}{(1-x \sqrt{2}) \sqrt{1-2 x^{2}}} d x \) is equal to
\( \mathrm{P} \)
(1) \( \frac{1}{2 \sqrt{2}} e^{x \sqrt{2}}\left(\frac{1+x \sqrt{2}}{1-x \sqrt{2}}\right)+c \)
(2) \( \frac{1}{2 \sqrt{2}} e^{x \sqrt{2}}\left(\frac{1-x \sqrt{2}}{1+x \sqrt{2}}\right)+c \)
(3) \( \frac{1}{2 \sqrt{2}} e^{x \sqrt{2}} \sqrt{\frac{1+x \sqrt{2}}{1-x \sqrt{2}}}+c \)
(4) \( \frac{1}{2 \sqrt{2}} e^{x \sqrt{2}} \sqrt{\frac{1-x \sqrt{2}}{1+x \sqrt{2}}}+c \)
.
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live