\( \int \frac{\sqrt{x^{2}+1}\left[\log \left(x^{2}+1\right)-2 \log x\right]}{x^{4}} d x \) is eq...
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=Ns6suNUlw2s
\( \int \frac{\sqrt{x^{2}+1}\left[\log \left(x^{2}+1\right)-2 \log x\right]}{x^{4}} d x \) is equal to
(A) \( \frac{1}{3}\left(1+\frac{1}{x^{2}}\right)^{1 / 2}\left[\log \left(1+\frac{1}{x^{2}}\right)+\frac{2}{3}\right]+C \)
(B) \( -\frac{1}{3}\left(1+\frac{1}{x^{2}}\right)^{3 / 2}\left[\log \left(1+\frac{1}{x^{2}}\right)-\frac{2}{3}\right]+C \)
(C) \( \frac{2}{3}\left(1+\frac{1}{x^{2}}\right)^{3 / 2}\left[\log \left(1+\frac{1}{x^{2}}\right)+\frac{2}{3}\right]+C \)
(D) none of these
ЁЯУ▓PW App Link - https://bit.ly/YTAI_PWAP
ЁЯМРPW Website - https://www.pw.live