Layerwise Learning for Quantum Neural Networks | AISC

Published on ● Video Link: https://www.youtube.com/watch?v=UP-ziqD7c1Q



Duration: 50:47
380 views
16


For slides and more information on the paper, visit https://ai.science/e/layerwise-learning-for-quantum-neural-networks--EUG8VX6rE8bCau6EML29

Speaker: Andrea Skolik; Host: Amir Feizpour

Motivation:
Recent advances in quantum computing hardware have made it possible to run first algorithms on experimental quantum devices. These quantum computers, referred to as noisy intermediate-scale quantum (NISQ) devices, still have a small number of qubits and no error correction. One type of algorithm that is believed to cope well with the limitations of NISQ devices are quantum neural networks (QNNs). In this talk, we are going to explore what QNNs are, why they also suffer from vanishing gradients like their classical counterparts, and introduce a new method to dampen the effect of vanishing gradients in QNNs called layerwise learning.


------
#AISC hosts 3-5 live sessions like this on various AI research, engineering, and product topics every week! Visit https://ai.science for more details




Other Videos By LLMs Explained - Aggregate Intellect - AI.SCIENCE


2020-09-30[MOREL] Unsupervised Video Object Segmentation for Deep Reinforcement Learning
2020-09-29Dealing with Bias and Fairness in Data Science Systems: A Practical Hands-on Tutorial | AISC
2020-09-29Overview: Machine Learning for Quantum Matter Research | AISC
2020-09-25Overview of Machine Learning for Knowledge Graphs | AISC
2020-09-24Integrating Physics into Machine Learning Models for Scientific Discovery | AISC
2020-09-24Applications of Blockchain to IoT Security | AISC
2020-09-24Human-Technology Systems for Intelligent Civil Infrastructure Operation and Maintenance | AISC
2020-09-23The AI Design Sprint -- setting your AI Initiative up for delivery success! | AISC
2020-09-23explainX - Explainable AI for model developers | AISC
2020-09-22Statistical Issues in Agent-Based Models | AISC
2020-09-22Layerwise Learning for Quantum Neural Networks | AISC
2020-09-17Survival regression with AFT model in XGBoost | AISC
2020-09-17Detecting Off-Topic Spoken Response with NLP | AISC
2020-09-16Defining your AI Value Model for Product Success (and Profit) | AISC
2020-09-15Real-World Quantum Communication: One Module at a Time | AISC
2020-09-15Predicting and Understanding Human Choices using PCMC-Net with an application to Airline Itineraries
2020-09-14Product Ideation: From a Hunch to a Concrete Idea
2020-09-14RadioAssistant - Ranking Radiology Patients using Deep Learning | Workshop Capstone
2020-09-11Building a better climate model with Machine Learning | AISC
2020-09-10Set Constrained Temporal Transformer for Set Supervised Action Segmentation | AISC
2020-09-10An overview of task-oriented dialog systems | AISC