Interactive and Interpretable Machine Learning Models for Human Machine Collaboration

Subscribers:
344,000
Published on ● Video Link: https://www.youtube.com/watch?v=bQfYRcXc9F0



Duration: 1:15:09
4,817 views
69


I envision a system that enables successful collaborations between humans and machine learning models by harnessing the relative strength to accomplish what neither can do alone. Machine learning techniques and humans have skills that complement each other — machine learning techniques are good at computation on data at the lowest level of granularity, whereas people are better at abstracting knowledge from their experience, and transferring the knowledge across domains. The goal of my research is to develop a framework for human-in-the-loop machine learning that enables people to interact effectively with machine learning models to make better decisions using large datasets, without requiring in-depth knowledge about machine learning techniques. In this talk, I present the Bayesian Case Model (BCM), a general framework for Bayesian case-based reasoning (CBR) and prototype classification and clustering. BCM brings the intuitive power of CBR to a Bayesian generative framework. The BCM learns prototypes, the "quintessential" observations that best represent clusters in a dataset, by performing joint inference on cluster labels, prototypes and important features. Simultaneously, BCM pursues sparsity by learning subspaces, the sets of features that play important roles in the characterization of the prototypes. The prototype and subspace representation provides quantitative benefits in interpretability while preserving classification accuracy. Human subject experiments verify statistically significant improvements to participants’ understanding when using explanations produced by BCM, compared to those given by prior art. I demonstrate the application of this model for an educational domain in which teachers cluster programming assignments to streamline the grading process.




Other Videos By Microsoft Research


2016-06-13Nature in the City: Changes in Bangalore over Time and Space
2016-06-13Making Small Spaces Feel Large: Practical Illusions in Virtual Reality
2016-06-13Machine Learning as Creative Tool for Designing Real-Time Expressive Interactions
2016-06-13Recent Developments in Combinatorial Optimization
2016-06-13Computational Limits in Statistical Inference: Hidden Cliques and Sum of Squares
2016-06-13Coloring the Universe: An Insider's Look at Making Spectacular Images of Space
2016-06-13Towards Understandable Neural Networks for High Level AI Tasks - Part 6
2016-06-13The 37th UW/MS Symposium in Computational Linguistics
2016-06-13The Linear Algebraic Structure of Word Meanings
2016-06-13Machine Learning Algorithms Workshop
2016-06-13Interactive and Interpretable Machine Learning Models for Human Machine Collaboration
2016-06-13Improving Access to Clinical Data Locked in Narrative Reports: An Informatics Approach
2016-06-13Representation Power of Neural Networks
2016-06-13Green Security Games
2016-06-13e-NABLE: A Global Network of Digital Humanitarians on an Infrastructure of Electronic Communications
2016-06-10Microsoft Research New England: An introduction
2016-06-06Python+Machine Learning tutorial - Data munging for predictive modeling with pandas and scikit-learn
2016-06-06Symposium: Deep Learning - Xiaogang Wang
2016-06-06Symposium: Deep Learning - Leon Gatys
2016-06-06Symposium: Brains, Minds and Machines - Surya Ganguli
2016-06-06Posner Lecture: Probabilistic Machine Learning - Foundations and Frontiers



Tags:
microsoft research
machine learning
artificial intelligence
human-centered computing
human-computer interaction