Let Abe a \( 2 \times 2 \) real matrix with entries from \( \{0,1\}...
Let Abe a \( 2 \times 2 \) real matrix with entries from \( \{0,1\} \) and \( |A| \neq \) 0 . Consider the following two statements :
P
(P) If \( \mathrm{A} \neq \mathrm{I}_{2} \), then \( |\mathrm{A}|=-1 \)
W)
(Q) If \( |\mathrm{A}|=1 \), then \( \operatorname{tr}(1)=2 \),
where \( \mathrm{I}_{2} \) denotes \( 2 \times 2 \) identity matrix and \( \operatorname{tr}(1) \) denotes the sum of the diagonal entries of \( \mathrm{A} \).
Then :
[JEE Main-2020 (September)]
(a) \( (\mathrm{P}) \) is true and \( (\mathrm{Q}) \) is false
(b) Both (P) and (Q) are false
(c) Both \( (\mathrm{P}) \) and \( (\mathrm{Q}) \) are true
(d) \( (\mathrm{P}) \) is false and \( (\mathrm{Q}) \) is true
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live