Let \( A=\left[\begin{array}{ccc}2 & 0 & 7 \\ 0 & 1 & 0 \\ 1 & -2 &...
Channel:
Subscribers:
458,000
Published on ● Video Link: https://www.youtube.com/watch?v=l43ifzlKmFQ
Let \( A=\left[\begin{array}{ccc}2 & 0 & 7 \\ 0 & 1 & 0 \\ 1 & -2 & 1\end{array}\right] \) and \( B=\left[\begin{array}{ccc}-x & 14 x & 7 x \\ 0 & 1 & 0 \\ x & -4 x & -2 x\end{array}\right] \) are
\( \mathrm{P} \)
W two matrices such that \( A B=(A B)^{-1} \) and \( A B \neq I \) (where \( I \) is an identity matrix). Then \( \operatorname{Tr}\left(A B+(A B)^{2}+(A B)^{3}+(A B)^{4}+(A B)^{5}+(A B)^{6}\right) \) is equal to \( (\operatorname{Tr}(A)) \) denotes the trace of matrix \( A) \)
(1) 2
(2) 6
(3) 8
(4) 16
š²PW App Link - https://bit.ly/YTAI_PWAP
šPW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw