\( A=\left[\begin{array}{cc}\tan \frac{\pi}{3} & \sec \frac{2 \pi}{...
Channel:
Subscribers:
458,000
Published on ● Video Link: https://www.youtube.com/watch?v=1o6yisMsqUY
\( A=\left[\begin{array}{cc}\tan \frac{\pi}{3} & \sec \frac{2 \pi}{3} \\ \cot \left(2019 \frac{\pi}{2}\right) & \cos (2020 \pi)\end{array}\right] \)
Let \( A= \)
\( \mathrm{P} \)
W
matrix such that \( P P^{T}=I \), where \( I \) is an identity
matrix of order 2. If \( Q=P A P^{\mathrm{T}} \) and \( R=\left[r_{i j}\right]_{2 \times 2}=P^{T} Q^{8} P \), then
(1) \( r_{11}=81 \)
(2) \( r_{11}=27 \sqrt{3} \)
(3) \( r_{11}=4 \sqrt{3} \)
(4) \( r_{11}=-\sqrt{3} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw