Let \( f(x)=\frac{x}{\left(1+x^{n}\right)^{1 / n}} \) for \( n \geq 2 \) and \( g(x)=f \) of \( ....
Channel:
Subscribers:
451,000
Published on ● Video Link: https://www.youtube.com/watch?v=tc72_jBWT8s
Let \( f(x)=\frac{x}{\left(1+x^{n}\right)^{1 / n}} \) for \( n \geq 2 \) and \( g(x)=f \) of \( f \ldots \)
P
of \( (x) \) ( \( n \) times). Then \( \int x^{n-2} g(x) d x \) equals
(1) \( \frac{1}{n(n-1)}\left(1+n x^{n}\right)^{1-\frac{1}{n}}+K \)
(2) \( \frac{1}{n(n-1)}\left(1+n x^{n}\right)^{1-\frac{1}{n}}+K \)
(3) \( \frac{1}{n(n-1)}\left(1+n x^{n}\right)^{1+\frac{1}{n}}+K \)
(4) \( \frac{1}{n-1}\left(1+n x^{n}\right)^{1+\frac{1}{n}}+K \)
š²PW App Link - https://bit.ly/YTAI_PWAP
šPW Website - https://www.pw.live