Let \( P(a \sec \theta, b \tan \theta) \) and \( Q(a \sec \phi, b \...
Channel:
Subscribers:
449,000
Published on ● Video Link: https://www.youtube.com/watch?v=N33Ph_TupEE
Let \( P(a \sec \theta, b \tan \theta) \) and \( Q(a \sec \phi, b \tan \phi) \), where
P \( \theta+\phi=\frac{\pi}{2} \), be two points on the hyperbola \( \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \). If \( (h, k) \) is the point of intersection of the normals at \( P \) and \( Q \), then \( k \) is equal to
(1) \( \frac{a^{2}+b^{2}}{a} \)
(2) \( -\left(\frac{a^{2}+b^{2}}{a}\right) \)
(3) \( \frac{a^{2}+b^{2}}{b} \)
(4) \( -\left(\frac{a^{2}+b^{2}}{b}\right) \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw