The locus of a point, from where the tangents to the rectangular hy...
Channel:
Subscribers:
449,000
Published on ● Video Link: https://www.youtube.com/watch?v=Rnc0PfIh2X4
The locus of a point, from where the tangents to the rectangular hyperbola \( x^{2}-y^{2}=a^{2} \) contain an angle of \( 45^{\circ} \),
P is
W
(1) \( \left(x^{2}+y^{2}\right)^{2}+a^{2}\left(x^{2}-y^{2}\right)=4 a^{2} \)
(2) \( 2\left(x^{2}+y^{2}\right)^{2}+4 a^{2}\left(x^{2}-y^{2}\right)=4 a^{2} \)
(3) \( \left(x^{2}+y^{2}\right)^{2}+4 a^{2}\left(x^{2}-y^{2}\right)=4 a^{4} \)
(4) \( \left(x^{2}+y^{2}\right)^{2}+a^{2}\left(x^{2}-y^{2}\right)=a^{4} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw