Let the function \(f:(0, \pi) \rightarrow R\) be defined by\[f(\theta)=(\sin \theta+\cos \theta).... VIDEO
Let the function \(f:(0, \pi) \rightarrow R\) be defined by\[f(\theta)=(\sin \theta+\cos \theta)^2+(\sin \theta-\cos \theta)^4\]Suppose the function \(f\) has a local minimum at \(\theta\) precisely when \(\theta \in\left\{\lambda_1 \pi, \ldots, \lambda_{ r } \pi\right\}\), where \(0<\lambda_1<\ldots<\lambda_{ r }<1\). Then the value of \(\lambda_1+\ldots+\lambda_{ r }\) is ____ . 📲PW App Link - https://bit.ly/YTAI_PWAP 🌐PW Website - https://www.pw.live
Other Videos By PW Solutions 2024-06-29 If Rolle’s theorem holds for the function \(f(x) = \ x^{3} - ax^{2} + bx - 4,\) \(x\epsilo.... 2024-06-29 Let \(f: R \rightarrow R\) be defined as\[f(x)= \begin{cases}-55 x, & \text { if } x<-5 \.... 2024-06-29 Water is being filled at the rate of \(1 \mathrm{~cm}^3 / \mathrm{sec}\) in a right circular con.... 2024-06-29 The maximum slope of the curve \(y=\frac{1}{2} x^4-5 x^3+18 x^2-\) \(19 x\) occurs at the point .... 2024-06-29 The function \(f(x)=x^3-6 x^2+a x+b\) is such that \(f(2)=f(4)=0\). Consider two statements.\(\l.... 2024-06-29 Let \(f\) be a real valued function, defined on \(R-\{-1,1\}\) and given by \(f(x)=3 \log _e\lef.... 2024-06-29 A wire of length \(20 \mathrm{~m}\) is to be cut into two pieces. A piece of length \(l_1\) is b.... 2024-06-29 The shortest distance between the point \(\left(\frac{3}{2}, 0\right)\) and the curve \(y=\sqrt{.... 2024-06-29 The shortest distance between the line \(x-y=1\) and the curve \(x^2=2 y\) is:.... 2024-06-29 If the curves \(x=y^4\) and \(x y=k\) cut at right angles, then \((4 k)^6\) is equal to........... 2024-06-29 Let the function \(f:(0, \pi) \rightarrow R\) be defined by\[f(\theta)=(\sin \theta+\cos \theta).... 2024-06-29 \(\max _{0 \leq x \leq \pi}\left\{x-2 \sin x \cos x+\frac{1}{3} \sin 3 x\right\}=\).... 2024-06-29 The function \(f(x)=x e^{x(1-\pi)}, x \in \mathbb{R}\) is.... 2024-06-29 The surface area of a balloon of spherical shape being inflated increases at a constant rate. If.... 2024-06-29 If \(p(x)\) be a polynomial of degree three that has a local maximum value 8 at \(x = 1\) and a .... 2024-06-29 Let \(f(x)=3 \sin ^4 x+10 \sin ^3 x+6 \sin ^2 x-3, x \in\left[-\frac{\pi}{6}, \frac{\pi}{2}\righ.... 2024-06-29 If \('R'\) is the least value of \('a'\)such that the function \(f(x) = x^{2} + ax\ +.... 2024-06-29 Let \(f:(a, b) \rightarrow R\) be twice differentiable such that \(f(x)=\int_a^x g(t) d t\) for .... 2024-06-29 A box open from top is made from a rectangular sheet of dimensiona \(a \times b\) by cutting squ.... 2024-06-29 Let \(f(x)=2 x+\tan ^{-1} x\) and \(g(x)=\log _e\left(\sqrt{1+x^2}+x\right), x\) \(\in[0,3]\). T.... 2024-06-29 The number of real roots of the equation \(e^{4 x}+2 e^{3 x}-e^x-6 =0\) is:....