Match the following lists:
\( \mathrm{P} \)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{ List-I } & \multicolumn{2}{|r|}{ List-II } \\
\hline A. & \begin{tabular}{l}
If the tangent to the ellipse \( x^{2}+4 y^{2}=16 \) at the point \( P(\phi) \) is a \\
normal to the circle \( x^{2}+y^{2}-8 x-4 y=0 \), then \( \frac{\phi}{2} \) may be
\end{tabular} & P. & 0 \\
\hline B. & \begin{tabular}{l}
The eccentric angle(s) of a point on the ellipse \( x^{2}+3 y^{2}=6 \) at a \\
distance of 2 units from the central of the ellipse is/are.
\end{tabular} & Q. & \( \cos ^{-1}\left(-\frac{2}{3}\right) \) \\
\hline C. & \begin{tabular}{l}
The angle of intersection of the ellipse \( x^{2}+4 y^{2}=4 \) and the \\
parabola \( x^{2}+1=y \) is
\end{tabular} & S. & \( \frac{\pi}{4} \) \\
\hline D. & \begin{tabular}{l}
If the normal at the point \( P(\theta) \) to the ellipse \( \frac{x^{2}}{14}+\frac{y^{2}}{5}=1 \) \\
intersects it again at the point \( Q \cdot(2 \theta) \), then \( \theta \) is
\end{tabular} & \( \mathrm{R} \). & \( \frac{5 \pi}{4} \) \\
\hline
\end{tabular}
W
\begin{tabular}{lllll}
& A & B & C & D \\
(1) & Q & P & S & R \\
(2) & P,S & R, S & P & Q \\
(3) & P & Q & R & S \\
(4) & none of these & &
\end{tabular}
.