The tangents drawn from a point \( P \) to the ellipse \( \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}....

Channel:
Subscribers:
453,000
Published on ● Video Link: https://www.youtube.com/watch?v=vjS6ZOsPm3I



Duration: 14:49
0 views
0


The tangents drawn from a point \( P \) to the ellipse \( \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \) make angles \( \alpha \) and \( \beta \) with the major axis.
\( \mathrm{P} \)
Now, match the following lists:
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{2}{|c|}{ List - I } & \multicolumn{2}{|c|}{ List - II } \\
\hline A. & If \( \alpha+\beta=\frac{c \pi}{2},(c \in \mathbb{N}) \), then the locus of \( P \) can be & P. & Circle \\
\hline B. & If \( \tan \alpha \cdot \tan \beta=c,(c \in \mathbb{R}) \) then the locus of \( P \) can be & Q. & Ellipse \\
\hline C. & If \( \tan \alpha+\tan \beta=c,( \) where \( c \in \mathbb{R}) \), then the locus of \( P \) can be & R. & Hyperbola \\
\hline D. & If \( \cot \alpha+\cot \beta=c,,( \) where \( c \in \mathbb{R}) \) then, the locus of \( P \) can be & S. & Pair of straight line \\
\hline
\end{tabular}
\begin{tabular}{lllll}
& A & B & C & D \\
(1) & R, S & P, Q, R, S & R, S & R, S \\
(2) & R & P, Q & P, R & Q \\
(3) & Q, R & S, P, R & Q, R & R, S
\end{tabular}
(4) none of these
.


📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live




Other Videos By PW Solutions


2024-01-23If the line \( y=m x+7 \sqrt{3} \) is normal to the hyperbola \( \frac{x^{2}}{24}-\frac{y^{2}}{1....
2024-01-23The normal to the rectangular hyperbola \( x y=c^{2} \) at the point ' \( t_{1} \) ' meets the c....
2024-01-23The asymptotes of the hyperbola \( \frac{x^{2}}{a_{1}^{2}}-\frac{y^{2}}{b_{1}^{2}}=1 \) and \( \....
2024-01-23If a directrix of a hyperbola centered at the origin and passing through the point \( (4,-2 \sqr....
2024-01-23If the line \( 2 x+\sqrt{6} y=2 \) touches the hyperbola \( x^{2}-2 y^{2}=4 \), then the point o....
2024-01-23The angle between the lines joining the origin to the points of intersection of the line \( \sqr....
2024-01-23Match the following Lists: \begin{tabular}{|l|l|l|l|} \hline \multicolumn{2}{|c|}{ List-I } & \m....
2024-01-23The co-ordinates of a point on the hyperbola \( \frac{x^{2}}{24}-\frac{y^{2}}{18}=1 \) which is ....
2024-01-23If \( \mathrm{a} x+\mathrm{b} y=1 \) is tangent to the hyperbola \( \frac{x^{2}}{a^{2}}-\frac{y^....
2024-01-23Match the following lists: \begin{tabular}{|l|l|l|l|} \hline \multicolumn{2}{|c|}{ List - I } & ....
2024-01-23The tangents drawn from a point \( P \) to the ellipse \( \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}....
2024-01-23The eccentricity of the conjugate hyperbola of the hyperbola \( x^{2}-3 y^{2}=1 \) is....
2024-01-23The number of possible tangents which can be drawn to the curve \( 4 x^{2}-9 y^{2}=36 \), which ....
2024-01-23The value of ' \( \mathrm{m} \) ' for which \( y=m x+6 \) is a tangent to the hyperbola \( \frac....
2024-01-23If \( x, y \in R \), satisfies the equation \( \frac{(x-4)^{2}}{4}+\frac{y^{2}}{9}=1 \) ,then th....
2024-01-23The equation of normal to the hyperbola \( x^{2}-9 y^{2}=7 \) at point \( (4,1) \) is....
2024-01-23The eccentricity of the hyperbola whose latus rectum is 8 and conjugate axis is equal to half th....
2024-01-23The equation of tangent to the conic \( x^{2}-y^{2}-8 x+2 y+11=0 \) at \( (2,1) \), is....
2024-01-23The equation of the chord of the hyperbola \( 25 x^{2}-16 y^{2}=400 \) which is bisected at the ....
2024-01-23Match the following lists: \begin{tabular}{|c|c|c|c|} \hline \multicolumn{2}{|r|}{ List-I } & \m....
2024-01-23Match the following lists: \begin{tabular}{|l|l|l|l|} \hline \multicolumn{2}{|c|}{ List-I } & \m....