Match the following lists:
\( \mathrm{P} \)
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{2}{|c|}{ List-I } & \multicolumn{2}{c|}{ List-II } \\
\hline A. & \begin{tabular}{l}
An ellipse passing through the origin has its foci \( (3,4) \) and \( (6,8) \). Then \\
the length of its minor axis is
\end{tabular} & P. & 8 \\
\hline B. & \begin{tabular}{l}
If \( P Q \) is a focal chord of the ellipse \( \frac{x^{2}}{25}+\frac{y^{2}}{16}=1 \) which passes through \\
\( S=(3,0) \) and \( P S=2 \), then the length of chord \( P Q \) is
\end{tabular} & Q. & \( 10 \sqrt{2} \) \\
\hline C. & \begin{tabular}{l}
If the line \( y=x+k \) touches the ellipse \( 9 x^{2}+16 y^{2}=144 \), then the \\
difference of values of \( K \) is
\end{tabular} & R. & 10 \\
\hline D. & \begin{tabular}{l}
The sum of distances of a point on the ellipse \( \frac{x^{2}}{9}+\frac{y^{2}}{16}=1 \) from the \\
foci is
\end{tabular} & S. & 12 \\
\hline
\end{tabular}
W
\begin{tabular}{lllll}
& A & B & C & D \\
(1) & P & Q & R & S \\
(2) & Q & R & S & P \\
(3) & Q & R & R & P \\
(4) & None of these & &
\end{tabular}
.