Match the items of Column I with those of Column II.
\( \mathrm{P} \)
\begin{tabular}{|l|l|c|c|}
\hline \multicolumn{2}{|c|}{ Column - I } & \multicolumn{2}{c|}{ Column - II } \\
\hline \( \mathbf{A} \) & \begin{tabular}{l}
If the line \( x-1=0 \) is the \\
directrix of the parabola \( y^{2}- \) \\
\( k x+8=0 \), then the value of \( k \) \\
is
\end{tabular} & \( \mathbf{P} \) & 2 \\
\hline \( \mathbf{B} \) & \begin{tabular}{l}
If \( l \) is the length of one side of \\
an equilateral the parabola \( y^{2} \) \\
\( =4 x \) with one vertex at the \\
origin, then \( l / 2 \sqrt{3}= \)
\end{tabular} & \( \mathbf{Q} \) & 4 \\
\hline \( \mathbf{C} \) & \begin{tabular}{l}
The latus rectum of a parabola \\
having \( (3,5) \) and \( (3,-3) \) as \\
extremities of the latus rectum \\
is
\end{tabular} & \( \mathbf{R} \) & 8 \\
\hline \( \mathbf{D} \) & \begin{tabular}{l}
If \( (2,0) \) is the vertex and \( y- \) \\
axis as the directrix, then its \\
focus is \( (a, 0) \) when \( a \) equals
\end{tabular} & \( \mathbf{S} \) & -4 \\
\hline
\end{tabular}
(1) \( (\mathrm{A}-\mathrm{S}) ;(\mathrm{B}-\mathrm{P}) ;(\mathrm{C}-\mathrm{P}) ;(\mathrm{D}-\mathrm{R}) \)
(2) (A-Q); (B-Q); (C-R); (D-Q)
(3) \( (\mathrm{A}-\mathrm{S}) ;(\mathrm{B}-\mathrm{R}) ;(\mathrm{C}-\mathrm{P}) ;(\mathrm{D}-\mathrm{Q}) \)
(4) (A-R); (B-S); (C-P); (D-Q)