On Formally Undecidable Propositions in Principia Mathematica and Related Systems I | Wikipedia ...
This is an audio version of the Wikipedia Article:
https://en.wikipedia.org/wiki/On_Formally_Undecidable_Propositions_of_Principia_Mathematica_and_Related_Systems
00:00:05 1 Outline and key results
00:00:10 2 Published English translations
Listening is a more natural way of learning, when compared to reading. Written language only began at around 3200 BC, but spoken language has existed long ago.
Learning by listening is a great way to:
- increases imagination and understanding
- improves your listening skills
- improves your own spoken accent
- learn while on the move
- reduce eye strain
Now learn the vast amount of general knowledge available on Wikipedia through audio (audio article). You could even learn subconsciously by playing the audio while you are sleeping! If you are planning to listen a lot, you could try using a bone conduction headphone, or a standard speaker instead of an earphone.
Listen on Google Assistant through Extra Audio:
https://assistant.google.com/services/invoke/uid/0000001a130b3f91
Other Wikipedia audio articles at:
https://www.youtube.com/results?search_query=wikipedia+tts
Upload your own Wikipedia articles through:
https://github.com/nodef/wikipedia-tts
Speaking Rate: 0.8764443999416742
Voice name: en-GB-Wavenet-D
"I cannot teach anybody anything, I can only make them think."
- Socrates
SUMMARY
=======
"Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I" ("On Formally Undecidable Propositions of Principia Mathematica and Related Systems I") is a paper in mathematical logic by Kurt Gödel. Dated November 17, 1930, it was originally published in German in the 1931 volume of Monatshefte für Mathematik. Several English translations have appeared in print, and the paper has been included in two collections of classic mathematical logic papers. The paper contains Gödel's incompleteness theorems, now fundamental results in logic that have many implications for consistency proofs in mathematics. The paper is also known for introducing new techniques that Gödel invented to prove the incompleteness theorems.