Pasting lemma

Channel:
Subscribers:
9,580
Published on ● Video Link: https://www.youtube.com/watch?v=lTb4DfW27LE



Duration: 0:05
8 views
0


In topology, the pasting or gluing lemma, and sometimes the gluing rule, is an important result which says that two continuous functions can be "glued together" to create another continuous function. The lemma is implicit in the use of piecewise functions. For example, in the book Topology and Groupoids, where the condition given for the statement below is that



A

B

Int

A


{\displaystyle A\setminus B\subseteq \operatorname {Int} A}
and



B

A

Int

B


{\displaystyle B\setminus A\subseteq \operatorname {Int} B}
.
The pasting lemma is crucial to the construction of the fundamental group or fundamental groupoid of a topological space; it allows one to concatenate continuous paths to create a new continuous path.

Source: https://en.wikipedia.org/wiki/Pasting_lemma
Created with WikipediaReaderReborn (c) WikipediaReader




Other Videos By WikiReader


2022-04-09Broad Peak
2022-04-09Monika Schleier-Smith
2022-04-09David Serrano (filmmaker)
2022-04-09King Arthur Park, Montana
2022-04-09Curacha Alavar
2022-04-09Baja 4000
2022-04-09Caladenia attenuata
2022-04-09Haakon Pedersen
2022-04-09Vutcani
2022-04-09Oncostatin M
2022-04-09Pasting lemma
2022-04-09Education Conservancy
2022-04-09Belhar Secondary School
2022-04-09Francis Dawes Melville
2022-04-09Matthew Keenan
2022-04-09B.A.T. (G.I. Joe)
2022-04-09The Sweet Hereafter (film)
2022-04-09Warco
2022-04-09Popes Creek (Maryland)
2022-04-092013–14 York City F.C. season
2022-04-09Morava (river)



Tags:
Cofinitetopology
Fundamentalgroup
Fundamentalgroupoid
ISBNidentifier
JamesDugundji
JamesMunkres
Locallyfinitecollection
Piecewisefunction