Probabilistic Elastic Part Model: A Pose-Invariant Representation for Real-world Face Recognition

Subscribers:
344,000
Published on ● Video Link: https://www.youtube.com/watch?v=X5p2RYU2Pwk



Duration: 49:18
230 views
3


One of the major visual complications confronting face recognition is pose variation. It is generally perceived that a part based representation for faces would be more robust to such pose variations. Instead of adopting a set of hand-crafted parts, we take a data driven approach to a probabilistically aligned part model, namely probabilistic elastic part (PEP) model. The model is achieved by fitting a spatial appearance Gaussian mixture model (GMM) on dense local features extracted from a set of pose variant face images. For a single face image or a track of face images, each mixture component of the learned spatial appearance GMM selects one local feature which induced the highest probability on it. These selected local features are concatenated to form the final pose invariant representation, namely the PEP representation. We apply the PEP representation for both unconstrained face verification and unsupervised face detector adaptation. For face verification, the PEP model achieved the highest verification accuracy on both the Labeled face in the Wild (currently ranked NO.2) and the YouTube Video face datasets (Currently ranked NO.1). For unsupervised face detector adaptation, we observed significant detection performance improvement adapting two state-of-the-art face detectors on three different datasets.




Other Videos By Microsoft Research


2016-07-26The Lab as Studio: Stories from Microsoft Research's first visiting artist
2016-07-26Distributed Optimization via Alternating Direction Method of Multipliers
2016-07-26Role of symbolic execution in software testing, debugging and repair
2016-07-26Can You Hide in an Internet Panopticon?
2016-07-26Intersection of two passions
2016-07-26Analysis of Boolean Functions: advances and challenges
2016-07-26Two basic problems in finite stochastic optimization
2016-07-26Decision Learning: Learning with Strategic Decision Making
2016-07-26The CUBE: examples and research challenges in large scale interaction space
2016-07-26The Promises and Pitfalls of Demographic Inference in Social Media
2016-07-26Probabilistic Elastic Part Model: A Pose-Invariant Representation for Real-world Face Recognition
2016-07-26Checking App Behavior Against App Descriptions
2016-07-26Scalable learning of Bayesian network classifiers
2016-07-26Everything you always wanted to know about web-based device fingerprinting (but were afraid to ask)
2016-07-26Making Reusable Hardware Design IPs Usable: an NoC perspective
2016-07-26Lessons from Megaprojects: The Creators and Destroyers of Capital
2016-07-26Unsupervised Transcription of Historical Documents
2016-07-26Online Learning and Adaptation Over Networks
2016-07-26Easy Generation and Efficient Verification of Unsatisfiability Proofs
2016-07-26Learning to Understand Natural Language in Physically-Grounded Environments
2016-07-26Frontiers of Accessibility: From the Body to the Mind, the Heart, and the Soul



Tags:
microsoft research